Simulation-Based Fault Injection as a Verification Oracle for the Engineering of Time-Triggered Ethernet networks

Loïc FEJOZ, RealTime-at-Work (RTaW)
Bruno REGNIER, CNES
Philippe, MIRAMONT, CNES
Nicolas NAVET, University of Luxembourg / designCPS.com

Toulouse, France | January 31 – February 2, 2018
Context & Objective

✓ TTEthernet from TTTech, based on SAE6802, is considered for use as high-speed data rate in future launchers (MIL-STD-1553B replacement)
✓ Time-Triggered communication eases the design of applications with dependability constraints

✓ This work: assess the precision and robustness of TTE clock synchronization algorithm
 o In the fault-free case
 o With permanent failures such as a link loss
 o With permanent and transient failures such as transmission errors – outside the fault-hypotheses of the design

✓ Parts of a collaboration between CNES, RTaW and ONERA
A primer on TTE and its clock-synchronization algorithm

- TTEthernet (TTE) is a switched Ethernet technology for critical systems marketed by TTTech and standardized as SAE6802
- Combines Time-Triggered (TT) + (AFDX-like) Rate-Constrained (RC) + Best-effort (BE) traffic

Clock synchronization through the exchange of Protocol Control Frames (PCF)
- Step 1: **Synchronization Masters** (SM) “send” local clock to **Compression Master(s)** (CM)
- Step 2: CM calculates new clocks based on received SMs clocks and sends back to SMs
- Step 3: SMs adjust their local clock
Protocol Control Frames called “Integration Frames” are used to perform all synchronization functions. They are transmitted accordingly:

1. The Synchronization Masters send Integration Frames at the beginning of each Integration Cycle. The timing of these frames is used for the “voting”

2. The Compression Masters send Integration Frames to everybody, timing them in a special way so that everybody can correct their clocks
The need for Simulation-Based Fault Injection (SBFI)

Key correctness properties of TTA/TTE have been formally established but

✓ Formal models do not cover all properties of interest
✓ Proofs are made with assumptions (e.g., simplifications) not always met by actual systems
✓ Proofs usually do not go beyond the design fault-hypotheses, but what happens outside? → SBFI helpful here
✓ Proofs are based on standards/specifications but implementation may not fully comply and implementation choices may matter
✓ Fine-grained simulation models requires complete understanding of the system
✓ ...

Verification and comprehensive understanding of new technologies in critical systems best achieved through combined use of testbeds, formal verification and simulation
TTE Model in CPAL and its validation
CPAL - a real-time embedded systems specific language

1. Model and program
 functional and non-functional concerns

2. Simulate
 possibly embedded within external tools such as RTaW-Pegase™ and Matlab/Simulink™

3. Execute bare metal or hosted by an OS

Available from www.designcps.com

A joint project of RealTime-at-Work and University of Luxembourg since 2012
Global TTE Model with 1 SW and 2 ES

Switch (SW)

End-System 2 (ES2)

End-System 1 (ES1)

Link SW→ES2

Link ES1→SW

Functional architecture: computational resources, processes and data flows
Model of a Switch serving as CM

Yellow rectangles are processes that execute in parallel.

Internal logic of each process described by a *Finite State Machine*.
Model development and validation

- Project requirements: **white box models** so that new failures scenario can be added → motivated the choice of CPAL
- CPAL library to enable the re-use of the automata defined in the standard
- Extension of the simulation engine to handle drifts to simplify code of model
- TTE model is very fine-grained: need for specifications and code reviews

Model validation
1. On a small configuration, comparison of model traces against “pen & paper” solution
2. Comparison against the black-box TTE simulation model in RTaW-Pegase implemented by another team
3. On a small configuration, comparison against monitored communication traces
4. Comparison with formal results from the literature [Dutertre, Steiner et al] and ad-hoc math. analysis
Accuracy of TTE Clock Synchronization Service
Experimental setup – 2 CMs and 4 SMs configuration

- **Switches are CMs and end-systems are SMs**
- **Clock drift**: linear model, per node drift value drawn at random at start of each cycle, ±50 ppm thus 500ns max. per 5ms cycle between any two clocks
- Done w/wo implementation delays in end-systems and switches, hereafter with delays
- Statistics with samples of size 100 000

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac_pcf_transmission_delay</code></td>
<td>143µs600ns</td>
</tr>
<tr>
<td><code>cm_function_delay</code></td>
<td>30µs27ns</td>
</tr>
<tr>
<td><code>integration_cycle</code></td>
<td>5ms</td>
</tr>
<tr>
<td><code>acceptance_windows</code></td>
<td>20µs18ns</td>
</tr>
<tr>
<td><code>cm_scheduled_receive_pit</code></td>
<td>173µs627ns</td>
</tr>
<tr>
<td><code>sm_schedule_receive_pit</code></td>
<td>337µs245ns</td>
</tr>
</tbody>
</table>

Multicast stream received by the green nodes [RTaW-Pegase screenshot]
Performance Metrics

✓ Maximum residual desynchronization during a communication cycle: "max. difference between any two clocks after the last SM has re-synchronized"

✓ Maximum desynchronization during a communication cycle: "max. difference between any two clocks"

Knowing the actual clock accuracy – and factors having an influence on it - is crucial to set in a safe manner:

✓ the TT transmission window length → dependability & bandwidth efficiency

✓ Specifications to suppliers
Maximum residual desynchronization in the fault-free case

- TTEthernet synchronization very efficient in the fault-free case
- Residual desynchronization is independent of communication cycle length but depends of PCF transmission delays and drifts PPMs

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>431</td>
<td>9,828</td>
<td>12,545</td>
<td>12,840</td>
<td>15,331</td>
<td>35,569</td>
</tr>
</tbody>
</table>

Unit: picoseconds
Maximum desynchronization in the fault-free case

- TT Ethernet max. desynchronization almost reduced to incompressible value due to drifts
- Depends on communication cycle length and PPMs

Small variations over time but not trends (e.g., errors accumulation)

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>64 090</td>
<td>184 713</td>
<td>193 091</td>
<td>306 316</td>
<td>512 821</td>
</tr>
</tbody>
</table>

Unit: picoseconds
Maximum desynchronization will permanent link failure and transmission errors

- **Link failure**: SW1 calculates time correction with a single SM clock – SM ES0 receives a single clock correction instead of 2
- **Transmission errors with a frame error rate 3%**: « inconsistent error omission » on all links which is outside design fault-hypotheses – Nodes may not receive clock correction during several cycles..
Maximum desynchronization will permanent link failure and transmission errors

Link failure
- ✓ Max. observed: 720ns, i.e. +208ns vs without link failure
- ✓ TTE robust to a permanent link failure within fault-hypotheses

Link failure + transmission errors
- ✓ Max. observed: 2.41us
- ✓ Significant wrt frame transmission time
- ✓ 3% FER – uncorrelated errors
Key takeaways

✓ Under realistic clock drifts, experiments suggest **TTE is very effective at maintaining a global clock** with a high precision

✓ TTE is robust to a permanent link failure but safety margin must be taken if transmission errors are to be tolerated

✓ Clock synchronization builds on the **transparent clock** mechanism – correctness and efficiency of its implementation is absolutely key

✓ Simulation model verification and calibration was only possible thanks to trace analysis and, to a lesser extent, formal analyses

✓ CPAL has proven to be an adequate modelling environment – importance of specifications, code reviews and the extensions to simplify code and facilitate traceability with standard
Thank you for your attention!

Any questions or comments? contact: nicolas.navet@uni.lu