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Abstract. In this paper two well-known scheduling policies for Real Time Systems, namely Background Scheduling
and Dual-Priority are compared in terms of response times for Soft Real Time traffic (SRT). It is proved in the
preemptive as well as in the non-preemptive case that, when the SRT traffic is FIFO, the Dual-Priority policy
always outperforms Background Scheduling for all instances of SRT tasks. When the SRT traffic is not FIFO but if
all tasks are of equal size then, in the non-preemptive case, the average response times is shown to be always better
under DP than under BS. As a complementary result, some non-FIFO examples where Background Scheduling
behaves better than Dual-Priority for some SRT tasks but also on the average of the SRT response times, are given.

The proofs are based on a trajectorial method that may be used for comparing other scheduling policies.

Keywords: Scheduling Algorithm, Dual-Priority, Background Scheduling, Soft Real-Time, Local Area Network.

1. Introduction

Context of the paper In real-time systems, hard and soft timing constraints generally coexist.
The problem of jointly scheduling Hard Real-Time (HRT) traffic and Soft Real-Time (SRT) traffic
is an important issue in real-time computing and it arises both for tasks (scheduling on the
CPU) and messages (scheduling on the network). The problem that we consider is to study some
schedules that reduce as much as possible the average response time of SRT traffic while ensuring
the timing requirements of HRT traffic to be met. In this study, it is assumed that the HRT traffic
is periodic or sporadic, while no assumptions are placed on SRT traffic for most of the paper (a
deterministic stability condition under the form of a (o, p) bound [§], is used for implementation
issues).

Existing work The simplest strategy for scheduling both SRT traffic and HRT traffic is to
schedule the SRT traffic in the "background" (that will be called the background scheduling
policy or BS for short), i.e. with a lower priority than any HRT tasks or messages. Experiments
have shown that it leads to poor performances in terms of responsiveness of SRT traffic (see [3, 11]
for the scheduling of tasks and for message scheduling [23, 13]). Several approaches performing

better have been developed for the scheduling of tasks.
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Existing scheduling schemes include Earliest Deadline Last (EDL, [7]), Deferrable Server (DS,
[19]), Priority Exchange (PE, [19]), Extended Priority Exchange (EPE, [29]), Static Slack Stealing
algorithm (STS, [18]) and Dynamic Slack Stealing (DSS, [10]). As pointed out in [3] and [9], they
all have disadvantages : DS, PE and EPE do not make use of all the available slack time, EDL
and DSS are computationally expensive while SSS may require, depending on the task set, to store
huge amount of information.

In [9, 11] an elegant and simple alternative, termed the Dual-Priority (DP) policy, has been
proposed. In essence, this policy facilitates the responsive execution of SRT tasks by executing
all HRT tasks immediately, when there are no SRT tasks ready, or as late as possible where SRT
tasks are ready to be ran.

The DP scheme is applicable over a wide range of problems with non-significant overheads and
no restrictive hypotheses except for the knowledge of the worst-case response time for HRT tasks.
Experiments published in [9, 11] and later in [3, 4] have shown through a series of simulations
that the DP policy is highly effective in terms of responsiveness of SRT tasks in the context of
the preemptive scheduling of tasks. From a practical point of view, the implementation of DP is
quite straightforward and can be either done at the kernel level such as in the Monstre real-time
OS [26] (quoted in [3]) or at the application level for instance using ADA constructs as detailed
in [6] and [3].

The dual-priority scheme is also usable for message scheduling on a network with bounded access
time to the medium and this, even when nodes are not synchronised because the knowledge of the
first release time of a periodic source is not mandatory. Its utilisation has been proposed in [30] and
it has shown to be very efficient [23, 13] in the context of a CAN (Controller Area Network [15])
based in-vehicle multiplexing system. Recently, the dual-priority strategy has been enhanced in
various directions. For the scheduling of tasks, a method for computing tighter bounds on the
response time for purely periodic task sets has been published in [3, 4]. In the context of message
scheduling, a mechanism that provides probabilistic guarantees to prevent hard real-time frames

from missing their deadlines when transmission errors can occur is proposed in [23].

Goal of the paper As previously mentioned, numerous experiments [9, 11, 3, 4, 23, 13] have
shown the DP strategy to be very efficient both for the scheduling of tasks and the scheduling of
messages. However, the problem of proving, in a precise manner, the efficiency of DP has not been
addressed yet. A first important question is whether DP always behaves better than the classical
strategy, termed Background Scheduling (BS for short), with which SRT tasks are assigned the
lowest priority levels under Fixed Priority Scheduling.

In this paper, we will prove that the response time of each instance of all SRT tasks is always
better under the DP policy if and only if the whole SRT traffic is FIFO. This result holds for the
preemptive and the non-preemptive case. We will also prove that the average response time of all
SRT instances in the non-preemptive case is always smaller under DP if all tasks are of equal size.

The comparison between DP and BS will be done in a path-wise manner where a path (also called
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a trajectory) of the system is determined by the tasks (resp. messages) activation dates and by
their execution (resp. transmission) times. These path-wise comparisons have several advantages.
Indeed, they will hold for arbitrary distributions of the arrival process of the SRT traffic and for
any increasing functional of the response time, such as the expectation and moments of any order
or even logarithm, exponential and Laplace transforms of the response times.

This result is two-fold. On the one hand, it reinforces the results hinted by previous experimental
studies showing substantial gain of DP over BS by providing a theoretical basis. On the other
hand, it suggests that when the FIFO ordering of SRT tasks is not satisfied, one may experience
a surprising phenomenon where some SRT tasks have a lower response time under BS. Indeed,
in some cases where the FIFO condition does not hold, we exhibit examples where the response
times of some SRT tasks (messages) are better under BS than under DP. Also, several simulations
were run under a non-FIFO case for SRT traffic in the context of the CAN network. They also
have the same kind of behaviour where the response times of some SRT messages is smaller under
BS than under DP.

Organisation of the paper In Section 2, we introduce the framework and the formulation of the
problem as well as the notations used in the following. Section 3 deals with the non-preemptive
case while Section 4 treats the preemptive case. Section 5 reports some simulations of a CAN
priority bus that illustrate the different behaviours coming up in the theoretical parts. Finally, in

Section 6, we investigate how to ensure the FIFO ordering of SRT traffic.

2. Framework

The context of this study is the preemptive and the non-preemptive scheduling of mixed SRT and
HRT traffic on a shared resource that can be either a processor or a network. Up to Section 4, we
will focus on the non-preemptive case. In order to keep a unified vocabulary, we will talk about

tasks even though everything, in the non-preemptive case, is transposable to messages.

Throughout this paper, we will use some concepts and ideas introduced in [17] and refined later
in [21, 20]. The system under study can be modeled by a finite set of m recurrent tasks and one
resource that executes the successive instances of these tasks. Regarding the timing constraints,

the set of tasks can be split into two subsets :

o the HRT tasks, H = {71, - ,7p},

e and the set of SRT tasks S = {Tpt1, -+ , T }-

For any task 7y, 71, denotes the n-th instance of task 74, Ay, ,, is the release time of instance 7y ,,,

and Cy, ,, is the load brought by instance 74, ,,. The HRT tasks are assumed to be periodic (resp.

sporadic) with a period (resp. minimal inter-arrival time) denoted by T}, for task 7.
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As for the SRT tasks, no assumption are placed in most of the paper, and SRT traffic can be

completely arbitrary. Only in Section 6, a deterministic stability condition will be introduced in
order to compute upper bounds on busy periods.
The resource (which capacity is fixed to 1) is shared by all the tasks according to a scheduling
policy (S) which assigns the resource to the instances. Under S, B,in is the time when execution
of 11, begins and E,f ,, is the time when execution of 7y, ends. Rf,n is the response time of 7 p,
and by definition Rf’n = E,fn — Ap, . If an instance 7y, ,, has been released before time ¢ but has
not been completed at time ¢ (i.e. Ay, <t < E,fn), then 73 , is said to be pending at time ¢.

Each instance of an HRT task 7 has a relative deadline Dy, (the absolute deadline for each
instance 7y, is Ak + D). The system is said feasible under S if each instance of all HRT tasks
meets its deadline. Formally,

Vk, Vn, RZ, < Dy. (1)

The resource, scheduled under the policy S, is busy at time ¢ if a task is being executed at time
t. The busy indicator is the right-continuous function 3°(#) equal to 1 whenever the resource is
busy at time ¢ and 0 otherwise.

For the sake of simplicity, in the rest of the paper, the following restrictions are placed :
1. Tasks have no jitter in their release date.

2. Context switch latencies are neglected.

3. HRT tasks have deadlines that are less than or equal to their periods.

Jitter in task availability dates (assumption 1) and context switch latencies (assumption 2) can be
taken into account in the schedulability analysis as in [5]. The third assumption (deadlines must

not be greater than periods) can be relaxed as in [11].

2.1.  The Background Scheduling policy (BS)

Under fixed priority scheduling, the priority assignment with which all SRT tasks are given lower
priorities than HRT tasks is called the Background Scheduling BS policy. Although experiments [3,
11, 23] have shown that BS performances are poor in terms of responsiveness of SRT tasks under
heavy load, BS has two key advantages; it is straightforward to implement and the feasibility of
HRT tasks is easily ensured.

Priorities BS is a Fixed Priority scheduling scheme, thus all instances 73, are given a fixed
priority level, denoted 785 (k,n). We will assume with no loss of generality that all instances
are ordered according to their numbering. In other words, 78%(k,n) = (k,n), ordered using the
alpha-numerical ordering (i.e. (k,n) < (k',n') if k < k' or k = k' and n < n'). The priority
numbering scheme adopted is "the smaller the number, the higher the priority" and the priority

rule says that if 729(k,n) < #B9(k’,n’), then instance 7y, has a higher priority than instance
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Trr e (and Ty has a lower priority than 7y,). If several instances of the same task are pending
at the same instant, then, the earliest release has priority over all other instances of the same task
(the system is FIFO within one task). As previously mentioned, under the BS scheme, all HRT
tasks have higher priority than all SRT tasks.

Allocation rule

In the non-preemptive case, the BS policy behaves according to the following rule:

as soon as the resource is not busy, the pending instance

with the highest priority starts being executed.

Note that under the non-preemptive allocation rule, the instance being executed can change only
at completion times.

Feasibility is equivalent to RPS < Dy V1, € H, where RP® is the worst-case response time of
task 7.

The value of RkB % in the non-preemptive case, is the maximum time needed by the task to gain
the resource (denoted by Ij, ) plus C}. When D; < Tj for all HRT tasks (the case D; > Tj is
slightly more complicated, see [1]), then 71 can be delayed by higher priority tasks and by one
lower priority task that has already obtained the resource (in the worst-case, it is the execution

time of the biggest task with priority lower than 7). From [14], we have :

RPS =C) + I (2)
where [}, is the longest time all higher priority tasks can occupy the bus plus the execution time of
the biggest lower priority task. I} is defined as the limit, when n goes to infinity, of the sequence

nt

=0, Ip= max(C}) + > Q T J + 1) ;. (3)

j<k

The quantity Ij, is computed starting with I) = 0, until convergence or until I}* > Dy — Cj. In

the latter case, 7, is not guaranteed to respect its deadline and the set of tasks is non-feasible.

2.2.  The Dual-Priority policy (DP)

The main difference with BS is that the priority level of the HRT tasks may change dynamically
over time. This policy has been proposed in [9, 11]. Under DP, the priority range must be
partitioned into three bands: "low hard", "soft", "high hard" in increasing level of priority. All
the priorities in the "low hard" range are lower than all "soft" which are lower than "high hard".
An HRT task is first queued with a priority within the "low hard" band and later, when it becomes
urgent, it will be promoted to the "high hard" range. Instead of executing HRT tasks as soon as
they are available, they can be deferred in favour of SRT tasks until they become urgent.

We define the critical interval for a HRT instance 7y ,, as the time interval |4, , + Dy —RPS, Ay, +
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Dy]. The priorities of HRT instances change over time. For all k¥ < p and for all n € N |

(k,n) if ¢ is in the critical interval for instance 3
PP (k. n,t) = ("high hard" priority), (4)
(m+k,n) otherwise ("low hard" priority).

The priorities of SRT tasks 73, remain fixed over time and stay in the "soft" priority range :
VE > p,Vt, 7PP(k,n,t) = (k,n).
Once the priorities are defined, the policy follows the same rule as BS: as soon as an ezecution is

completed, the pending instance with the current highest priority starts being executed.
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Figure 1. A trajectory under DP and BS policies.

An illustration of a trajectory under BS and DP policies is represented in Figure 1. The rectangles
represent the instances of the tasks, with a grey area when the instance is being executed and a
white area when it is pending and waiting to be executed. In this example, four tasks are competing
for the resource : 7 and 7» are HRT tasks while 75 and 74 are SRT tasks (with the notations
adopted here, we have p = 2 and m = 4). The release times are 411 = 0,421 =2,A431 =4, 441 =
6. The execution times are respectively : C; = 5,Cy = 3,C3 = 5,Cy = 4. At time 0, the only
pending instance is 7y 1, therefore, it starts being executed immediately, under DP as well as under
BS: Bfls = BP" = 0. When instance 71,1 is completed (at time 5), then 751 and 73 are pending.
Under BS, their respective priorities are: 785(2,1) = (2,1) and 785(3,1) = (3,1). Therefore, 75
gets the resource: BY" = 5. Under DP, their respective priorities are: 7°7(2,1,5) = (2+ 4,1)
(we assume that instance 75 is not in its critical interval at time 5) and 7P (3,1,5) = (3,1).

Therefore, 73,1 gets the resource and Bf{’ = 5. Under DP, when 73 is completed at time 10,
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75,1 and 74,1 are pending. Their respective priorities are: 777 (2,1,10) = (2,1) (it is in its critical
interval) and 72 (4,1,10) = (4,1). Therefore, 751 gets the resource: By’ = 10. Finally, under

DP the response time of 731 and 74 is respectively 6 and 11 versus 9 and 11 under BS.

LeEMMA 1 The policy DP is feasible if and only if BS is feasible.

This lemma is a direct consequence of the computation of a bound on the worst response time of
HRT tasks under DP. This computation has been proposed in [11]. Note however that under DP,
even if the response time of a HRT task is guaranteed to be smaller than the deadline, it may be

increased.

3. Dual-Priority VS Background Scheduling : the non-preemptive case

Numerous simulations suggest that DP improves substantially the average response time of SRT
tasks over BS. For the non-preemptive case, simulations were performed in [23, 13] for message
scheduling on a CAN (Controller Area Network) priority bus. These simulations use exponential
inter-arrival times for SRT messages and measure the average response time and the variance
of response times. For both criteria, the gain provided by DP over BS is very important. For
instance, the observed gain for average SRT response time ranges from a factor of 2.4 for a 60%
total load to a factor of 3.8 for a 95% total load. It is also noteworthy that the dual-priority
scheme offers very good resistance to an increase of the network load up to 90%.

However, up to the authors’ knowledge, no formal proof of the fact that policy DP actually
improves the response times of SRT tasks over BS has been published so far. In this section,
we will provide the necessary and sufficient condition under which DP is better than BS on
any trajectory. The path-wise method has the advantage that one will be able to compare any

increasing functional of the response time for any arrival process of the SRT tasks.

3.1.  Busy periods

We define the total workload at time t as the left continuous function
t
W) = 3 Chnlin,an - [ Bluda, (5)
(k) 0

where 1p is the indicator function over the set B. The function W (t) can be seen as the total
amount of work which has arrived before time ¢ and which is still waiting to be done. The first
term in Equation (5) is the amount of work arrived before ¢ while the second term is the work

done between 0 and ¢, with time 0 being the availability date of the resource.

LEMMA 2 The total workload is the same under BS and DP.

Proof: In order to prove this lemma, we just use the fact that both policies are non-idling which

means that whenever there is something ready to be executed, the resource is busy.
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By definition of the resource busy functions, we have:

t

WhS(t) = Z C’k7n1{Ak‘n<t}_/ BB (w)du, (6)
(k,n) 0
t

WPP(t) = Z Crnlia,., <t} —/ BPF (u)du. (7)
(k) 0

Therefore, if 3B5(t) = BPF(t) for all ¢, then the workloads will coincide. Let us assume that
the busy functions are not the same under both policies. By the right continuity of the functions

BPP(t) and BB (t), there exists a time o > 0 such that:

BPP () = pBS(t), Vts.t.0<t<to,
BPF(to) # BP(to).

Let us assume that we have 8PP (ty) = 0 and P(ty) = 1. Since the release times of all tasks
as well as their execution durations are the same under both policies, and using the fact that the

busy functions are the same in both cases up to time ¢, Equations (6) and (7) yield
WEBS(ty) = WPP(ty).

Now, using the non-idleness of policy DP, 3PP (ty) = 0 means that WPF () = 0. As for BS, we
have 3B%(tq) = 1 and WPB%(t5) = 0 which is only possible if there is an arrival at time tq in BS.
But since the arrival times coincide under BS and DP, this implies that there is an arrival under
DP at time to as well, contradicting the fact that S”F(ty) = 0. The same argument holds for
proving that 8P (o) = 1 and BB%(ty) = 0 is impossible. [ |

Definition 1. [busy period, cluster] A busy period B is a time interval [¢;, ¢3[ such that 8(t) =1
for all ¢t € [t1,t2) and W(t;) = 0, W(t5) = 0 (where t* is the limit lim,j;y). The set of all
instances arriving in a busy period, forms a cluster, and will be denoted by C(B) ou simply C when

the busy period itself is not important.

An immediate corollary of Lemma 2 is that busy periods and clusters coincide under BS and
DP.

The rest of this section is devoted to the proof of the following result.

THEOREM 1

i- If the SRT traffic is executed in the FIFO order under both DP and BS, then for each instance
Tim of the SRT traffic, EPY < Ele

it- If the SRT traffic is not necessarily FIFO but if all SRT instances are of the same size, then
DP performs better than BS on the SRT traffic on average: for all cluster C of size |C|,

1 1
1] > Effﬁm > B

€S, Tin€C €S, Tin€C
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However, there exists some configurations where BS performs better than DP on some SRT in-
stances.
iti- If the SRT traffic is executed in an arbitrary order and the size of the tasks are not all equal

then there exists some configurations where BS performs better than DP on average.

Before going on with the proof, this theorem calls for several comments.

e First note that Parts ¢ and 4 essentially give general positive results: under such and such
conditions DP performs than BS for all possible sets of tasks. On the other hand, Part iii
only says that there exist well chosen cases where BS is better than DP. The experiments
presented in Section 5 will add some insight on this by showing that those cases are somehow

rare. However, they cannot be dismissed.

e In Part i, we assume that the SRT traffic is executed in the FIFO order under both DP and
BS. This does not mean that the FIFO order is imposed in a static way by the priorities, but

only that the execution of the tasks happens to be FIFO, which is a weaker requirement.

The three parts (i,7,44) will be proved respectively in the three following subsections.

3.2. Part i- The FIFO Case

In this section, all instances of SRT tasks are executed in the FIFO order. With no loss of
generality, we can assume that there exists a single SRT task 7,,,, with m = p+ 1, that gathers all
the instances of SRT tasks.

The first step is to compare DP and BS over a single busy period involving a cluster C (introduced
in Definition 1). The global comparison will be derived from the individual comparisons over each
cluster of the trajectory.

Over one busy period, we transform DP into a fixed non-preemptive priority policy, called EP in the
following, which behaves exactly as DP by choosing appropriate priorities. Consider the completion
times of all the instances in the cluster C under DP and assign priorities to all the instances

according to the order of their completion time. Namely, 7”7 (k,n) = #{(i,j) € C : EPF < EPP}.

LEMMA 3 For all instances 13, , in C, E,?f = E,‘?f

Proof: First note that EP is non-idling and has the same clusters and busy periods as DP. The
proof holds by induction on the size of the cluster considered. If the cluster is made by only one
task, then clearly, B}’ = Ay n+Cr.n = Ef'L. Now assume that the cluster is made of i instances.
We remove the task executed last under DP, say instance 7,,5,. We get a cluster made of 7 — 1
tasks. By induction, B = E['l" for all tasks in this reduced cluster.

Under DP, the completions of all tasks in the original cluster, are the same as in the reduced

cluster since 7, is executed last. As for EP, task 7,5 has the lowest priority by construction of
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EP. Since the remaining ¢ — 1 tasks form a cluster, the additional task 7,5 with the lowest priority

is transmitted last. |

LeEMMA 4 Consider an arbitrary instance of a SRT instance, say 1y,,. Then E,?,If < E,?,SL

Proof: We first show that under EP the priorities of all SRT instances are ordered according
to their arrival. Let 73, be an arbitrary SRT instance. Under policy DP, the priorities of SRT
tasks are static and FIFO (by hypothesis). Since A, < Agni1, 707 (kyn,t) < 7PP(k,n + 1,t)
for all t. Using the execution rule of policy DP, if instance 7 , has not yet been transmitted at
time Ay, 41, then both tasks are pending. Whenever there is an execution opportunity, 7, has
priority over 7,41 by the FIFO rule, therefore, it will be transmitted earlier. This means that
EPP < EPP .. As for EP, by definition, 777 (k,n) < #"F(k,n + 1).

The priority order among SRT instances is the same under EP and BS. As for real-time instances,
their priority in EP is a modification with respect to those in BS. By applying Lemma 14, given

in Appendix A, we obtain Efﬁ < E,f;f for all n. [ ]

Now, the proof of Part i of Theorem 1 is a direct consequence of Lemmas 3 and 4.

3.3.  Part ii- The equal size case

In this subsection, the sizes of all SRT instances are all equal to C'. As first step, we consider
the DP policy (the BS case will be treated in Lemma 7). The sequence of the end of execution
of all the instances defines some total order v on all the instances. Namely, v(k,n) < y(k',n') if
instance 7y, is executed before instance Ty .

We want to compare the performance of two different executions of DP on the same set of tasks
where only the priorities within the set of SRT tasks have been changed with the constraint that
they must stay in the priority zone of SRT tasks : each HRT instance in its critical interval keeps
a higher priority than all SRT instances and a HRT instance out of its critical interval has a lower
priority than all SRT instances. These changes in the priorities induce changes on the order of
execution of the tasks, namely ~.

Let Bs(t) (resp. Bm(t)) be the right-continuous SRT indicator function (resp. HRT indicator
function) defined as follows. If the processor works on an SRT (resp. HRT) instance then Sg(t) =1
(resp. Su(t) = 1) and Bs(t) = 0 (resp. Su(t) = 0) otherwise. In other words Bs(t) tells us if the
processor works on the SRT traffic at time ¢ or not.

In the following, we will compare two orders, v and 7', induced by some changes in the priorities
on the SRT tasks. Since Bs(t) + Bu(t) = B(t) is the total busy indicator, under the orders vy and
v', we have Bs(t) + Bu(t) = B5(t) + By (t) because in both cases the policy (DP here) is non-idle

(see Lemma 2).
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LeEMMA 5 We consider two executions under DP, one of them following the order v and the other
one following ~'. If the SRT instances are all of the same size, then the SRT indicators are the
same: ¥t >0, PBg(t) = B5(t).

Proof: We consider two executions, one of them following the order v and the other one, «'.
Since fs(t) and B%(t) are right-continuous functions, there exists ¢, which is the smallest time
where 8s(to) # B5(to) and Sg(t) = B5(t) for all t < ty. This means that one of them (say Bs(to))
changes while the other one (8%5(tp)) remains the same. Let us first consider the case where Ss(to)
changes from 1 to 0 while 8%(t) remains equal to 1 with Bs(to) + Br(to) = Bs(to) + By (te) =1

Since both SRT indicators coincide up to time ¢y and since the orders v and ' agree on all HRT
instances, the set of HRT instances pending at time ¢y are the same under both executions. Also,
the amount of SRT work pending at time ¢y is the same under both executions (and is positive
because 85(to) = 1). Since the size of SRT tasks are equal, this means that the same number
of SRT instances have been completed under v and under +'. If 85 changes at tg, this means a
SRT instance just completed its execution. Since the same number of SRT instances have been
completed up to tg under v/, a SRT instance also just completed its execution under +'.

At time tg the situation is the following.
(A) There exists a pending HRT instance 73, such that y(k,n) < vy(h,u) for all pending SRT
instances 7p q.
(B) On the other hand, in the second execution, there exists a pending SRT instance 7; ; such that
v'(i,7) < +'(a,b) for all pending HRT instances 7, 5. Property (A) means that one HRT instance,
Tk, 18 in its critical interval while property (B) says that all HRT instances are in the non-critical
mode. This is impossible so that ¢y does not exists.

The case where B¢(to) changes from 0 to 1 is symmetrical with situations (A) and (B) reversed.
A HRT task has just completed its execution under both v and 7' and under v a SRT gets the

resource while under 4’ a HRT instance gets the resource. This is also impossible.

LEMMA 6 Under DP, if all SRT instances have the same size C then the average completion times

of SRT instances under priorities v and v' are the same: for each cluster C,

> Ean= > E,

Ti€S,Tin€C 7, €S, Ti,n €C

Proof: If the busy period associated with cluster C starts at time h, If we consider the de-
parture times of all the SRT instances under 7, then the first departure occurs at time ¢; =
inf{t| f,f Bs(u)du > C}. The second departures occurs at time to = inf{¢| f,f Bs(u)du > 2C}. More
generally, the k*® departure occurs at time t; = inf{¢| fif Bs(u)du > kC}. Since the SRT busy

indicators B and S, coincide, the instants of the departures are the same under v and under v/
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(even if the departing instances are different). Therefore the sum over all instances in the cluster

is the same under both orders. |

If we consider policy BS, then a similar lemma can be shown.

LEMMA 7 Under BS, if all SRT instances have the same size C' then the average completion times

of SRT instances under priorities v and v are the same: for each cluster C,

> Ea.= > E,

7 €S, Ti,n€C €S, Ti,n €C

Proof: The same technique as for Lemmas 5 and 6 can be used. [ ]

Proof: (Part ii of Theorem 1). Let 4’ be the original order of execution for DP and let 4" be the
original order of execution for BS. We can construct 7 such that all SRT tasks are executed under
the FIFO order under BS as well as DP. For example, choose n(k,n) = (m, Ag,,) (this puts all
SRT instances in a single task and orders them according to the date of arrival). Now, we know
that under -y, DP has the same average performance as under ' (Lemma 6). Under -y, BS has the
same average performance as under y" (Lemma 7). Finally DP performs better than BS under v

for each SRT instance (Part ¢ of Theorem 1) and a fortiori on average.

The second assertion about the inversion on some instances is proved via the construction of an
example similar to the construction presented in the forthcoming Figure 2, with two SRT tasks

with the same size and Eff < E:{’lp. ]

3.4. Part iii- An example where BS performs better than DP

In this section, we construct a configuration where the response times of some SRT tasks are
smaller under BS than under DP. Let us consider the trajectory illustrated in Figure 2 with 2
instances of HRT tasks (A;; = 0 with C; = 5, 421 = 3 with Cy = 2) and 2 instances of SRT
tasks (As1 = 6 with C3 = 2, A4 1 = 4 with C4y = 7). Considering that neither instance 1 nor
instance 73 ; are in a critical interval, we obtain on this trajectory Ele =5, E2Bls =17, E?{gf =9,
Eff = 16 for BS and Eflp =5, Eflp = 16, E£1P = 14, Eflp = 12 for DP.

Note that for 731, BS performs better than DP because EZY = 9 < EPF = 14. This inversion is
due to the fact that SRT tasks are executed in a non FIFO order. In this example, SRT tasks are
not of the same size, it is thus possible that BS performs better than DP on average. This is the
case here since the average response time under DP is 1/2 - (Eff —A3zq1+ Efls — Ay1) = 8 while

under BS it is equal to 7.5 .
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Figure 2. A trajectory under DP and BS in the non-preemptive case, where BS performs better than DP for 73,1 .

4. Dual-Priority VS Background Scheduling : the preemptive case

Several simulations published in [9, 11, 3, 4] suggest to us that DP improves greatly the response
time of SRT tasks over BS in the preemptive case as well. However, as for the non-preemptive case,
to the best of our knowledge, no formal comparison between DP and BS has ever been proposed.
In the preemptive case, the priorities defined for BS and DP respectively are the same as in Section
3 (non-preemptive case). The only difference lies in the resource allocation rule which is now, for

both policies :

the instance of the task being executed at time t is the pending task of highest priority.

The difference is that the task being executed can change suddenly, (for example as soon as a
high priority task is released) and not only at completion times as in the non-preemptive case.
Thus, the execution of a task 73, can be split in several pieces, Ty ,,; being the ith piece with
execution beginning and completion respectively denoted by By ,; and Ej , ;. Each interruption
in the processing of a task is caused by an instance of a higher priority task that takes the resource.
Note that under DP, the change can occur when an instance entering a critical interval, has its
priority promoted.

As for the non-preemptive case, we will compare DP and BS over each trajectory. Here again, DP
performs always better than BS when all SRT tasks are FIFO. Surprisingly, the proof does not
work in the general case for completely different reasons. In the non-preemptive case, changing
the priorities only improves the lowest priority task (Lemma 14), while in the preemptive case,

all tasks with an improved priority benefit from it (Lemma 15). The problem for the preemptive

DRAFT July 4, 2001, 11:05am DRAFT



14

case comes from the comparison of BS with a fixed priority policy that behaves as DP, where the
FIFO property is needed to have compatible priorities.

As for the non-preemptive case, feasibility under BS is always equivalent to RZ S <Dy V1, €P.
The computation of RkBS in the preemptive case is classical, it has been for instance studied by

Joseph and Pandya [16] and later by Audsley et al. [2] :
R = I (8)

where Ij, the longest time that all higher priority tasks can occupy the resource, is the limit of

the sequence
0 n E Il?_l
J

Vi<k

e )

I} is computed starting with I) = 0 until convergence or until I}* > Dy, — C.

4.1.  Busy periods

LEMMA 8 The total workload is the same under BS and DP.

Proof: The proof is exactly the same as in the non-preemptive case, see Lemma 2. |

An immediate corollary is that busy periods as well as clusters are the same under DP and under
BS. One can also verify that the workload (as well as busy periods and clusters) are the same
under preemptive and non-preemptive systems because of the non-idleness.

In the rest of this section, we will prove the following theorem

THEOREM 2

i- If the SRT tasks are executed in the FIFO order under both DP and BS, then for each SRT
instance Tgn, E,?’f < Efg

it- If the SRT tasks are not FIFO, then there exists configurations where BS performs better than

DP on average.

Note that Part ¢ of Theorem 2 is similar to Part ¢ of Theorem 1. However, unlike in the non-
preemptive case, BS may perform better than DP on average as soon as the FIFO condition is not
satisfied, even when the SRT instances are all of the same size. This will be illustrated in Section

4.3.

4.2.  Part i-The FIFO case

In a similar way as in the non-preemptive case, we construct an intermediate policy EP with fixed
priorities that behaves exactly as policy DP. However, the construction is more involved.
To construct EP, we consider each piece 4 ,,; of execution of task 73, under DP as an instance

of task 7y, called 7, ;, with arrival time Ay ,. Therefore, under EP, several instances (as many
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as there are pieces under DP for 7y ,) are released at the same instant. The priorities under EP

are given according to the end of execution of all the pieces:

7B (k,n,i) = #{(z,y,2)|Ey;.. < Eir, (10)

z,y,2 kn,iJ*

LEMMA 9 For all k,n,i, EPP = EEP

k,n,i k,n,i*

Proof: The proof holds by induction on the size of the cluster that includes 73 ,,. If 73 5, is alone
in the cluster, then 7y, is not interrupted during its execution and it is formed by a single piece
Tkn,1 = Tk,n- By Lemma 8, we have E,?’f = El‘gil.

Now, let us assume that the cluster is formed of n pieces. The reduced set composed of the same
pieces except the last one to be executed under DP forms a cluster with n—1 pieces. By induction,
the completion times are the same under both policies. As for the last task, it is executed last
under DP, therefore, according to Equation (10) it has the lowest priority under EP and will be

thus executed last among the considered cluster. [ ]

In the rest of this section, we consider that all SRT instances are ordered in the FIFO order
under BS. As for the non-preemptive case, we can assume that there exists a single SRT task 7,,,
with m = p+ 1, that gathers all the instances of SRT tasks.

We first need to modify the tasks under BS by considering each piece of execution 7y, ; (defined

in Section 4.2 to be a new task with arrival time Ay, and priority 725 = (k,n,q).

LEMMA 10 Under EP, the SRT tasks verify 2P = < gEP and EP < gEP foralln,j,i.

m,n,i m,n+1,7 m,n,i m,n,i+1
, DP _ pEP : )
Proof: By Lemma 9, we have E)° , = E " .. By construction of the tasks 7, i, we have

EDPP = < EDPH,J- and EPP < gDP for all n, j,i. By definition of the priorities under EP,

m,n,i m,n m,n,i m,n,i+1
see Equation (10), we obtain 75/ . < «fh | o and 728 o < xlE o for all n, j,i. [ |

LEMMA 11 Under the FIFO assumption on SRT tasks EDY . < EEP . for all n and i.

m,n,i — “m,n,i

Proof: First note that a task 74,,; may not be executed in a single piece under BS, unlike
under EP. If a single cluster is considered, then all the SRT tasks have compatible priorities under
BS and EP using Lemma 10. As for the HRT tasks, their priorities can be very different under
both policies. However, for each SRT task 7, i, all HRT tasks have higher priority than 7, ,, ;
under BS. Combining the two previous properties, the set of tasks with higher priority under EP
is included in the set of tasks with higher priority under BS. Therefore we can apply Lemma 15,
given in Appendix B, which implies that EZ? =~ < EBS [ |

m,n,t — “m,n,i*

LEMMA 12 For any task Ty, E,?JI; < EE,SL

Proof: First, note that E,gff = E,gf;h, where piece 7y, is the last piece of task 1y, under

DP. Using Lemma 9, we obtain Effjh = E,?f:h. Now, using Lemma 11, Effjh < E,?gh. Finally,
using Lemma 10, E,fﬁ = E,fih, which ends the proof. [ |
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4.3.  Part ii- An example where BS performs better than DP

We now show an example of a trajectory for which the preemptive scheduling under DP is not
better than under BS for SRT tasks on average. As for the non-preemptive case of Section 3.4,
this counter example uses SRT tasks arriving in a non FIFO order. Here, we also need a HRT
task which has its priority promoted.

Let us consider a trajectory (see Figure 3) with a single HRT task (A11 = 3 and C; = 3) and
two SRT tasks (A1 =6 and Cy =7, 431 = 0 and C3 = 7), the HRT instance 71 entering its
critical interval at time 9. Under this trajectory, we obtain E{’” = 10, EP{" = 16, E’{’ = 17 and

EPY =6, EPY =13, EJY =11

7 N

A S S TR S I S S S N S S
{ T T T

T
BS DP
Az Ay Ary E3y E3q

)

Start of critical interval for 7 1
Figure 3. A trajectory under DP and BS in the preemptive case, where BS performs better than DP for 72 1 .

Figure 3 represents this trajectory, one notes that EJY < EP!, thus for 7,1 BS performs better

than DP. Again, this phenomenon is due to the non-FIFO feature of the SRT traffic. Note that
it is possible to build examples for which the difference Eﬁf; — EﬁSJ is arbitrarily large, for some
SRT instances 7, ;. Since the scheduling is here preemptive, BS may outperform DP even if the
SRT tasks of the example are of the same size. This is actually the case since the average response

time under DP is 13.5 versus 12 for BS.

5. Experiments

Many simulation results have been published in the literature that show a substantial gain in terms

of response time for SRT traffic when DP was used instead of BS. Under heavy load (> 70%), the
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gains usually encountered were above 60% (see experiments 5.3 and 5.4 in [11], Figure 4 in [4],
Figure 2 in [23] and Figure 5 in [13]). In this section, in order to exhibit the practical implications
of Theorem 12, we present new simulations done in the non-preemptive case.

In the first experiment, we consider a realistic CAN-based in-vehicle application provided by the
car industry (see [24] for a detailed description) where 6 devices (e.g. engine controller, automatic
gear box, ...) exchange messages. The traffic consists of a set of 12 HRT messages (e.g. speed
and torque from the engine controller) with periods T3 = 10, T = 14, T35 = 20, Ty, = 15,
Ts = 20, Ts = 40, Ty = 15, Ty = 50, Ty = 20, Tip = 100, 711 = 50 and T12 = 100ms, all
having a size of 125 bits. The periodic sources are assumed to begin transmitting from the start
of the simulation. In addition, there exists a stream of SRT frames whose inter-arrival times are
exponentially distributed. Among the SRT traffic, we distinguish 15 different messages all of size
100 bits. The transmission rate of the CAN bus is 125kbit/s and the total network load induced
by the 27 messages is 90% with 53.46% for the periodic part.

40% I |

| |
Gain in %
35% -

30% - n

25% - n

20% - n

15% - n

10% - n

5% n

0% —|'ﬁ|— I I I I I I I I I I I I
Tz Ty Tis Tie Tir Tis Tho Too T Toz2 Toz Tos Tos Tae Tor
SRT Messages

Figure 4. Average gain in response time of DP over BS for each SRT message with 12 HRT messages.

In order to show the importance of the priority order among the SRT messages, we have imposed
the SRT messages to be emitted in a quasi-LIFO order, that is in the order :
To7.1,T26,1,T25,1," " * »T15,1, T14,1, T13,1, T27,2, * -, the inter-arrival time between two consecutive in-
stances being exponentially distributed. The simulations using DP and BS policies respectively
were run on more than 10,000 instances of HRT messages.
The results, represented in Figure 4, show the gain (given in percentage) of DP over BS for each
SRT message in terms of the average response time. It is worth noting that while the gain remains

substantial for message 727 (around 40%), this is not the case for messages in the high and mid-
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priority ranges (the gain for 715 is for instance around 2%). This is very small compared to other
simulations which were published in the literature.

In the second set of experiments, we have chosen an environment which was likely to exhibit the
behaviour illustrated in Figure 2, where some SRT tasks (here messages) have a better response
time under BS than under DP. We simulate a CAN priority bus with a stream composed of 15
different SRT messages of size 100 bits and with a single HRT message of length 115bits and period
71 = 1ms. The transmission rate is 250kbit/s, the HRT message induces a load of 46% while the
total load is 95%. Again, the SRT messages are released in a quasi LIFO order

T16,1,T15,1, 14,1, " * ,T4,1,73,1, 72,1, 716,25 " " *

The results of these simulations are shown in Figure 5. Here, it is remarkable to notice that 4

5% T T T T
w0 L Gain in % 1
3% I — .
2% I | .
19 T — B
0%

1% =
2% .
3% .
4% .

5% L ! ! ! ! ! ! ' ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SRT Message Id

Figure 5. Average gain in response time of DP over BS for each SRT message with 1 HRT message.

out of 15 SRT messages have an average response time better under BS than under DP, namely
tasks 74,78, 712 and 715. Note also that the gain obtained for task 73 under BS is about 5%, and
is the largest absolute gain. In our experiments, the inter-arrival times for each SRT message is
a sum of 15 iid exponential variables and therefore has a small variance. The global behaviour is
thus "close" to a periodic case where the response times among SRT messages are known to vary
drastically. This gives an explanation to the very different performances of messages 8 and 9.

We have also tried to find configurations where BS outperforms DP on average with stochastic
arrival times for SRT traffic. None of the simulation experiments could show this result. In
particular, starting with the example of Figure 2 and introducing a very small variability of the

arrival times of SRT messages (uniform distribution on a small interval) changes the relative
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performance of DP and BS and DP happens to beat BS on average even when the size of the

interval is very small with respect to the period (a ratio down to 1072 in our experiments).

6. Implementation Issues

Throughout the paper we have seen that the FIFO ordering for SRT tasks is critical for the
efficiency of DP when all SRT messages have the same size. In this section, we are concerned with
the practical problem of ensuring the FIFO ordering for SRT traffic.

In a centralised framework, the FIFO ordering for SRT tasks is easily achieved through prioriti-
zation. The problem that will be addressed in this section is to find a way of imposing the FIFO
ordering for the scheduling of messages in a distributed environment. We will focus on the CAN
priority bus but the principles of the analysis remains valid for other priority buses such as the
J1850 [28] or VAN [12]. The use of DP for message scheduling on CAN has been proposed by
Tindell and Hansson in [30]. The mechanisms described in the following are compatible with the
use of DP on CAN.

Each station may emit SRT messages as well as HRT messages. Each message is composed of K
bits for priority encoding and M bits for control and data. In the following, we will propose a
way to encode the FIFO feature on those K bits, provided that all stations have a synchronous
clock. Note that the encoding of information using some bits of the identifier is rather classical in
CAN, see for instance [31] and [25]. To synchronise the stations, we have to add an initialisation
phase, which consists in sending a special frame that serves as global starting signal. This signal
will serve as the origin of time, the granularity of time being the bit-time. Since the CAN protocol
ensures that all nodes are synchronised on the bit-time, all stations will have coherent clocks.
For HRT messages, the K priority bits are used in the following way : the first 2 bits are set to
00 when the message is in a critical interval and 10 otherwise (see Figure 6). The following K — 2
bits are used to encode the priority level. This is possible as long as K — 2 > log,(p) where p is
the number of HRT frames. For SRT messages, the first 2 bits of the K priority bits are set to
01. The following K — S — 2 bits are used to encode the current time ¢, common to all stations
by assumption, which is called the time-stamp of the frame. The last S = [log, (# stations )] bits
are used to encode the identifier of the sender station (in order to break ties in case of identical
time-stamps). There is enough space as long as K — S — 2 > log,(#). Note that distinguishing
between the 2 types of HRT frames and SRT frames using the first 2 bits of the CAN frame has
already been proposed in [30].

With this method the priority for an instance of a SRT message is its release instant. Therefore,
with the assumption that all stations are synchronised, it makes sure that all the SRT traffic
satisfies the FIFO ordering. However, the drawback of this method is the fact that it is impossible

2K75'72

to encode SRT messages after time . In order to deal with this problem, we propose to

add one particular SRT message (called the reset message, denoted 7,,+1) that will be released
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Identifier Field: K bits

< »
. | »

mﬂ - _Pr_:i_o;igy_ HRT frame in critical section

m Priority HRT frame in a non-critical section

K-S-2 bits S bits

|o|1| time-stamp statioi@ SRT frame

Figure 6. Identifier field of the CAN frame for HRT frames and SRT frames.

every H units of time, with a priority level defined as for the SRT messages (i.e. function of its
time-stamp and station identifier). On reception of this particular message, each station decreases
its time clock by H units of time, as well as the time-stamp of all SRT messages which are waiting
to be sent.

The question now is how to choose H and K such that no overflow of the time clock ever occurs.
First, let us compute an upper bound L on the length of all busy periods in the system, this
will give us a bound on the response time of the reset message. This calculus can be done under
some assumptions on the SRT traffic, namely, a deterministic load arrival bound such as a (o, p)
condition (see [8]). We assume that for any message, 7y, the work released in any interval of size
t is bounded by the affine formula o + pit. In particular, periodic and sporadic messages satisfy
a (o, p) condition. The deterministic stability of the system says: Zznjll pr < 1. Now, let the
interval [t1,%2] be a busy period of the system. This means that the total load is null at time ¢
and at time t5. Therefore, the length of the busy period equals the load which has arrived during
the interval [t1,t2]. This yields

L< Dyt .
R DAy
LeEmMmA 13 With
H=2K"52_1p, (11)

there is no time overflow.

Proof: The k" instance of the reset message is released at kH and completes its execution at
er, when the clock is set to zero, see Figure 7.

The initial reset message being released just after the synchronisation and before all other SRT
instances, no overflow occurs until eg. Suppose that with the chosen H no time overflow has
occurred until e_;. Because of the FIFO order, SRT instances pending at ef_; have been released
after (k —1)H. Due to the reset at ex_1, their time-stamps and those of the instances released in
[ex—1,er] vary between 0 and ey — er—1. To avoid overflow, e;, — ex_; must be shorter than the
longest time that can be encoded, i.e. shorter than 2X~5=2. Since all response times are shorter

than the longest busy period, we have ey < kH + L. Furthermore e;—; > (k — 1)H. Thus,

er —ep—1 <kH+L—(k—1)H=H+ L =2K-52
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2K7572

Actually any choice H < — L is an acceptable solution, but to limit the overhead induced

by the reset message, H should be chosen as long as possible.

H L

| | | |
T T T

(k — 1)H ey kH ek

Figure 7. Choosing the period H of the reset message.

Note that the reset message contributes to the total load and also to the bound L of the busy
periods, with 0,1 being the transmission time of the reset message and pp41 = Opmy1/H. When
K and the characteristics of the traffic are fixed, then Equation (11) can be solved in H (quadratic
form).

In the context of CAN, the number K of bits allocated for priority encoding is fixed to either 11
bits (CAN 2.0A) or 29 bits (CAN 2.0B). A typical case (as for in-vehicle networks, see [27, 24])
would involve less than 64 stations, so that S = 6 is enough.

With K = 11, this leaves only 3 bits for time-stamp encoding. Considering the 12 HRT messages
described in Section 5 and a SRT traffic inducing a load of 75% made of 20 messages of 100 bits,
the total load at 500kbit/s is 86%. When solving (11), we obtain two negative values for the
period H of the reset message. Thus the proposed method is not applicable on CAN2.0A.

With CAN2.0B, K = 29 thus 21 bits are left for the time-stamp encoding which enables to encode
a time-stamp range of 4194 ms. Using the same traffic as previously, the bound L on the longest
busy period is 76 ms and the solution of Equation (11) is H = 4118 ms. In these conditions, the

load overhead of the reset message is 4.10~° which is neglectable.

7. Conclusion

In this paper, it has been proven for the preemptive as well as for the non-preemptive scheduling
that the response times of the SRT traffic are always better under the Dual-Priority than under
Background-Scheduling if and only if the whole SRT traffic is FIFO. This was confirmed by
simulations of a CAN bus which have shown the response times of some SRT messages to be
smaller under BS than under DP when the FIFO condition is not satisfied. The result of the
study reinforces the results hinted by previous experimental studies showing substantial gain
of DP over BS by providing a theoretical basis which gives practical guidelines for application

designers willing to implement DP.
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As suggested by an anonymous reviewer, one could imagine a DP mechanism where the priority
promotion time Y is not a priori set to Y = A, + Dy — Ry, but where it could take any value
between Ay, and Ay, + Dy — Ry. For example, with Y = Ay ,,, the resulting policy is BS. For
each task set, there exists an optimal priority promotion time scheme (regarding SRT response
times). The interesting open problem is now to find these optimal promotion times with respect
to the characteristics of the task set.

Finally, such a path-wise method of comparing scheduling policies may also be used for several
other non-idling scheduling policies such as EDL [7], PE [19] or EPE [29]. This is currently under
investigation.

Acknowledgement The authors would like to thank Gerald Cabus for some helpful discussions
about the implementation issues of the FIFO feature on priority buses as well as the anonymous

reviewers who suggested to analyse the average case.

Appendix A

Changing priorities (non-preemptive case) This appendix is devoted to the proof of a general
technical lemma about the effect on the change of priorities in the BS policy in the non-preemptive
case.

A formula for the response time for an instance 73 ,, can be derived from [22] (p.22). It satisfies

the following equality.
Rk,n = Ck,n + min {t Z 0 | Qk,n(Ak,n) + Fk,n(t) + pk,n(Ak,n) = t}; (A]-)
where

o O ,(x) is the workload present at time z contributed by all instances with priority higher

than 7 (k,n),

o Tpn(z) = Z(m) Lin(ijy<n(kn)} 1{Ay. . <A; ;<A . +2}Ci,j 1s the high priority work arrived be-

tween the release time, Ay, and time Ay, + .

®  pp.n() is the remaining execution time of an instance with a priority lower than m(k,n), which

has started its execution before time x and is not completed yet.

As for the completion time,

Ek n — Ak,n + Rk,n

)

Ak7n + Ck,n + min {t >0 | Qk,n(Ak,n) + Fk,n(t) + pk,n(Ak,n) = t}-

We construct a new fixed priority function 7' in the following way: 7’'(m,n) = m(m,n) for all
instances of the lower priority task 7,,. As for any other task 71, 7'(k,4) is arbitrary (possibly

larger than 7'(m,n)).
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All quantities related with the new priority will be denoted with a prime sign.

LEMMA 14 For any instance of the lowest priority class, Tmn, En . < Emon.

m,n —

Proof:

Consider an instance of the lower priority task 7, . This task belongs to a cluster, say C of all
instances involved in a busy period [t1,t2[. In the following of the proof, we will only consider the
instances of tasks belonging to C, since no other task will influence the completion time of task
Tm,n, under both priorities.

Under the original priorities, since 7., is the instance with the lowest priority released so far,
Pmn(Amn) =0 and

Epmn=Amn+ Copn+min{t >0 | Qppn(Amp) + Don(t) =t} (A.2)

As for the value of £y, ,,

Ehw=Amn+Cnn+min{t >0, (Ann) + T n(t) + ol (Amn) =t} (A.3)

In order to compare both values, we will examine closely the values of the different terms involved
in Equations (A.2) and (A.3).

Since Ty, is the lowest priority tasks which has ever been released by time A,, ,,, then

Qmm(Amm) = W(Am,n) (A4)
= WI(Amm) (A5)
> le,n(Am,n) + p;n,n(AmJl)? (A.6)

where, Equation (A.4) comes from the fact that when instance 7, , is released, it has the lowest
priority so far, Equation (A.5) from the fact that the workload of all non-idling policies are equal
(see Lemma 2) and Equation (A.6) from the definition of Q' and p’ which are both distinct part
of the workload, €2;,, (A ) is the fraction of the workload at time A, », due to instances of high
priority and py,, ,,(Am,») is the fraction of the workload due to an instance with lower priority than
Tm,n Deing transmitted at time A, ,.

In addition, for each time ¢,

Crn(t) = ZC'i,j1{ﬁ(i,j)<ﬁ(m,n)}1{Am,ngAi,ngm,n+t}, (A7)
(4,5)

> ZC'i,j1{ﬁ'(i,j)<ﬁ'(m,n)}l{Am,ngAi,jgAm,n+t} (A.8)
(4,5)

= TV, . (b). (A.9)

Inequality (A.8) comes from the fact that the set of all instances (7; ;) such that 7 (4, j) > 7(m,n)
arriving after time A,, ,, is exactly the set {7, ;,7 > n}. It is included in the set of instances such
that 7' (i, j) > 7'(m,n) and arriving after time A,, ,, since 7’ does not modify the priorities among

the task 7,,,. The complementary sets are included in the reversed direction. For all (i, j),

Lr(igy<m(mmy M Am n<As <A m a+t} 2 n (i) <’ (mon)} A n <As <At}
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Combining both Equation (A.6) and (A.9) yields Ey, n > Ey, ,- [ |

Appendix B

Changing priorities (preemptive case) In the preemptive case, one can prove a more powerful
result than Lemma 14. Here the response time of any instance is improved whenever its priority
is improved, while Lemma 14 only considers the lowest priority task.

The completion time of an instance T3 5, is given by the formula:

Ek,n = Ak,n + min {t >0 | ka(Akm) + ekm(t) + Ck,n = t}:
where

o Qpn(z) is the workload present at time z contributed by all instances with priority higher

than 7(k,n),

[ 6k7n(m) = Z(i,j) Ci7j1{77(iyj)<ﬂ'(k7n){1{Ak,n§Ai,]‘<m+Ak,n} is the hlgh pI‘iOI‘ity load arrived be-

tween the release time Ay, ,, and time Ay, , + .

We modify some priorities such that the priority of instance 7y, is improved: for all (i,7),
7'(i,j) < 7' (k,n) = w(i,j) < w(k,n). Under this assumption on «’, the following lemma can be

established.

LEmMMA 15 Ej , > E,’w

Proof: The proof is similar to the proof of Lemma 14.
Again, using the non-idling conservation Lemma 8, the busy periods as well as the clusters are
identical under both priorities. Task 73, belongs to one cluster involved in a busy period, [¢1, t2].

In the following only tasks in this cluster will be considered.

Ek,n = Ak,n + min {t >0 | ka(Akm) + ekm(t) + Ck,n = t}:

and

E]Ic,n = Ak,n + min {t >0 | Q;@,n(Ak,n) + G;Cm(t) + Ck,n = t}.

A first sequence of inequalities gives

Qk,n(Ak,n) - Wk,n(Ak,n) (B].)
> Wi (Akn) (B.2)
= ;Wﬂ (Ak,n); (B3)

where Wi,,,(t) (resp. Wy ,(#)) is the workload at time ¢ of a system where all tasks with priority

lower than 7(k,n) (resp. 7' (k,n))have been removed.
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Equality (B.1) comes from the fact that in preemptive systems, low priority tasks have no

influence on the execution of higher priority tasks. Equality (B.2) comes from the fact that the

set of the instances with higher priority than 73, under 7 includes the the set of the instances

with higher priority than 7, under 7’. Equality (B.3) is the same as Equality (B.1) but with 7'.

The second series of inequalities is

Oman(t) = ZCi,j1{7r(i,j)<7r(m,n)}l{Am,ngAi,]-<Am,n+t} (B.4)
(i,9)

> ZC'i,j1{7r'(i,j)<7rf(m,n)}1{Am,ngAi,j<Am,n+t} (B.5)
(i,9)

= 0L, (1) (B.6)

Inequality (B.5) comes from the definition of #’ which implies that for all (i, j),

Lin(ig)<m(mm) 3 VA n<Ai j<Amn+t} S (i) <nr (mon)} LA Amon <Aij <A +1}-

Combining both Equation (B.3) and (B.6) yields Ey, n > Ey, .. [ |
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