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Abstract

We apply large deviation theory to assess the probabil-

ity that the average, or the sum, of the response times

of a sequence of consecutive aperiodic jobs is below

a given threshold. This coarse-grained performance

metric is for instance adapted to evaluate the respon-

siveness of a soft-real system or the freshness of in-

put data consumed by an algorithm. The technique

proposed works with distribution of response times as

input but does not require that the distribution obeys

a closed-form equation. Indeed, it can accept empir-

ical distributions given under the form of frequency

histograms obtained, for instance, by monitoring the

system. Future work should be devoted to further as-

sess the applicability of the proposal and relax some

technical assumptions.

1 Introduction

Context of the study In the field of real-time sys-

tems, the real-time performances of periodic activi-

ties (tasks, messages) have been extensively studied.

Response times, be they worst-case or average, and

jitters can be evaluated by simulation or analysis but

it requires that the activation model of the tasks and

its parameters are known. The problem is quite dif-

ferent for aperiodic activities since, in many practical

cases, it is not possible to have a precise knowledge

of the activation pattern before the implementation of

the system. For example, this is generally the case

for aperiodic frames, usually subject to soft real-time

constraints, exchanged among the Electronic Control

Units (ECUs) in the body network of a vehicle. Such

frames are usually assigned a low priority, and thus

they do not delay the hard real-time periodic or spo-

radic traffic. However their own response times are

difficult to estimate.

Problem definition In this paper we discuss the

problem of evaluating the real-time performances of

aperiodic activities. The metric of interest here is the

average response times of successive activations of an

activity. Activities are termed tasks in the follow-

ing, but what is said equally holds for frames. We

want to estimate the probability that the average re-

sponse times of the aperiodic tasks remain below a

given threshold. We are generally here in the realm

of soft real-time constraints, but their satisfaction is

important since large response times may jeopardize

the execution of a function, and may even raise safety

concerns in some cases (e.g. headlights flashes in a

vehicle). In addition, low responsiveness is negatively

perceived by the user. It is worth mentioning that ac-

tivities that are periodic per essence are sometimes

implemented in an aperiodic manner in order to save

resources. For instance, in some control systems, a

frame is transmitted only if the value it contains be-

longs to a certain interval.

Overview of our approach We do not assume any

knowledge of the aperiodic tasks activation pattern,

however we assume that it is possible to monitor

the system, or a detailed simulation model of it, and

gather data about the response times. Precisely, from

the measurements, we build a frequency histogram of

the response times that will be used later on as an em-

pirical response time probability distribution for a sin-

gle aperiodic task. Now, the problem is to assess the

average response times over a set of successive acti-

vations of the same task. This can be done by Monte-

Carlo simulation or analytically. The latter option is

developed in the present paper by applying results

from Large Deviation (LD) theory. The interest of

LD with regard to Monte-Carlo simulations is three-

fold. First, simulation is not well suited to estimate

rare events (e.g., less frequent than 10−4) because of

the size of the sample that is needed to achieve rea-

sonable error bounds1. Second an analytical approach

does not suffer the uncertainties of simulation (e.g.,

1Central Limit Theorem tells us that the convergence rate is of

order n1/2 where n is the number of random draws, which means

that adding one significant digit requires increasing n by a factor

100.
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quality of the random number generators). Finally, re-

sults presented here can be integrated into a broader

probabilistic temporal analysis.

Existing work Our approach belongs to the class

of stochastic analyses for real-time systems. Proba-

bilistic approaches are promising because they answer

questions that cannot be addressed in a deterministic

manner (e.g., distribution of response times) and con-

sider models that are more realistic, for instance, re-

garding the task activation patterns or the way to ex-

press soft real-time constraints.

These approaches can be classified in two main

classes. One class consists in extracting quantitative

information for one or more parameters (e.g., distri-

bution of the execution time) from samples of obser-

vations collected by monitoring the system [5]. Such

approaches actually belong more to the realm of sta-

tistical methods. The other class of stochastic ap-

proaches concerns the temporal analysis of systems

that have at least one parameter being a random vari-

able. Among the studies in this area, one can for in-

stance mention [3, 1, 9, 6, 4].

To the best of our knowledge, there is no study on

aperiodic task response times, which is the focus of

this study. In addition, another novelty with respect to

previouswork comes from the use of LD, which to our

knowledge has never been applied to real-time sys-

tems. LD is a theory of rare events that is focused on

the analysis of tails of probability distribution, and is

classically used to study how random processes devi-

ate from their expected value. If upper bounds on this

quantity can be obtained through Chernov, Markov

and Tchebychev inequalities, LD provides the exact

rate of convergence, and not an upper bound that is

often not tight enough for real-time applications. LD

has been a very active field of investigation over the

last 10 years with numerous practical applications, for

instance for evaluating performance of algorithms or

telecommunication infrastructures [7] or assessing the

risks in finance [8, 10].

Contribution of the paper We apply large devia-

tion theory to assess probability bounds on the average

response times, or sum of the response times, of suc-

cessive instances of aperiodic tasks. We provide the

analysis enabling to deal with empirical distributions

given under the form of histograms, which is nice in

practice since actual response times might not always

obey a closed-form equation.

Another advantage is that the technique is inde-

pendent of the scheduling and can be used what-

ever the policy (preemptive, non-preemptive, fixed-

priority, dynamic-priority, etc) and whatever the task

model. However, as it will be discussed in Section 2,

the fulfillment of some rather strong assumptions is

necessary.

2 System model and assumptions

We consider a system made of a set of tasks compris-

ing aperiodic and possibly periodic tasks. The kth job
of task τi is denoted by τi,k. Let Ri,k be the response

time of τi,k, that is the time between the release time

of the job and its completion. Let (Ri,n)n∈N be the

sequence of the response time values for task τi. We

assume that the system can be monitored during a suf-

ficiently long time period and that an empirical distri-

bution of the response times can be obtained.

Since several tasks compete for the processor with

execution times that may vary over time, the response

time of a task τi may change from one instance to an-

other job of this task. We assume that the response

times of successive instances of an aperiodic task form

a sequence of mutually independent and identically

distributed (i.i.d) values. One denotes by (Ri,n) the
sequence of i.i.d. values of the response times of τi,k

over successive activations. Departure from the i.i.d.

property, caused by non-stationarity, linear and non-

linear dependences, can be estimated, for instance us-

ing the BDS test (Brock, Dechert and Scheinkman -

[2]), but a simple autocorrelation analysis alone will

give us a good deal of information by detecting linear

temporal dependencies.

This study is specifically targeted at aperiodic tasks,

first, because periodic tasks can generally be well

handled using existing results from scheduling theory

and, second, because response times of periodic tasks

(under WCET assumption) forms a sequence that is

periodic after some time instant and thus do not verify

the i.i.d. assumption.

3 Probabilistic estimation with

large deviation: a recap

In this section, we recap some basic results from the

field of large deviation, and some recent results pre-

sented by the authors in [8] that enable to handle dis-

tributions given as histograms.

For a given sequence of mutually independent,

identically distributed random variables (Ri,n), n ∈
N, letMn = 1

n

∑n

k=1 Ri,k be the mean of this se-

quence (Ri,n). We obtain using Cramer’s theorem2,
that P (Mn ∈ G) satisfies a rate deviation principle
with rate-function I:

P (Mn ∈ G) ≍ e−n infx∈G I(x)

2see Appendix 6 for details and notations
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whereG is any subset of R. In our case, G is the sub-
set we want to assess the probability that the response

time belongs to. For instance, if we are interested in

P (Mn ≥ k) with k ≥ E[Ri,n] then G = [k, +∞)
and we estimate the decay rate of the right-hand tail

of the distribution. From LD theory, we know that

I(x) = supτ>0[τx − log E(eτx)]

= supτ>0[τx − log
∑+∞

k=−∞
pkekτ ]

(1)

If there is a closed form for the law of the Ri,n, or

if theRi,n form a finite Markov chain, it is possible to

obtain an explicit expression for the rate function. In

our case, where the law of Ri,n is given by a density

histogram, this is not possible and a numerical method

has to be used to obtain an estimate of I(x).
As I(x) is a supremum of affine functions, it is
a convex function and it is enough to compute the

point x∗ where I(x) reaches its minimum to obtain
the asymptotic behavior

P (Mn ∈ G) ≍ e−nI(x∗) (2)

x∗ is the point where the first derivative of

I(x) with respect to t is equal to 0 (see equa-
tion 1). This point is reached for τ0 s.t.

x
∑+∞

k=−∞
pkekτ0 =

∑+∞

k=−∞
kpkekτ0 which can be

rewritten as
∑+∞

k=−∞
(k − x)pkekτ0 = 0. Let u = et

and

F (u) =
+∞∑

k=−∞

(k − x)pkuk (3)

The problem consists in finding numerically u0 > 0
s.t. F (u0) = 0. This problem can be solved with
Newton-like methods, which are available in any nu-

merical or symbolical computation software.

4 An example

Let us consider here a numerical example for an ape-

riodic task having the empirical distribution of the re-

sponse times given in Figure 1.

Imagine we want to evaluate the probability that the

average response time over a certain number of in-

stances n is greater than a value x (or that the sum
of the response times is larger than nx). We replace x
by its value in Equation 3 and we obtain numerically

u0 such that F (u0) = 0. The value of t for which the
right side of Equation 1 is maximized is t0 = ln(u0).
Then, we compute I(x) over the interval of interest
G (here [x, +∞)) and the infimum is the decay rate
I(x∗) we are looking for (see Equation 2).
The upper bound on the probability that P [Mn ≥

x] for x ∈ {45, 50, 55} is shown in Figure 2. For
instance, over 10 instances, the probability to get an
average response time greater than 45 is less than 0.25,

RT interval Probability k

[0, 10) 1/25 5
[10, 20) 2/25 15
[20, 30) 3/25 25
[30, 40) 10/25 35
[40, 50) 4/25 45
[50, 60) 3/25 55
[60, 70) 2/25 65

Figure 1: Empirical distribution of the response time

(in ms), with an expectation equal to 37.4. The value
of k is the mean of the interval.
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Figure 2: Upper bound on the probability that

P [Mn ≥ x] with x ∈ {45, 50, 55} and n ∈ [1, 30]
obtained for the empirical distribution of the response

times given in Figure 1.

while the probability to get more than 50 and 55 are
respectively lower than 0.021 and 0.0004.

It is worth mentioning that it is possible to study the

sum of the response times of a set of aperiodic tasks

in the same way as done previously for a single ape-

riodic task, provided that the individual distribution

of the response times are independent. The probabil-

ity distribution of the sum of two independent discrete

random variables X and Y with probability distribu-
tion f and g is given by their convolution f ⋆ g. In
practice, the most efficient way to compute a convo-

lution is the use of the Fast Fourier Transform (FFT)

(see [8] for more details).

5 Conclusion

In this paper we propose a new approach for esti-

mating a probability on the average and the sum of

the response times of a sequence of consecutive ape-
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riodic tasks. The approach is based on large devi-

ation theory and can be applied under any schedul-

ing policies (fixed-priorities, EDF, preemptive, non-

preemptive) as long as the system can be monitored.

The results hold under the assumption that the re-

sponse times are i.i.d.. In practice, this assumption

can be easily tested using statistical tests such as the

BDS statistics but it is clear that it will not hold for all

kinds of systems and workloads. Future work should

be devoted to experimental studies aimed at determin-

ing the practical conditions ensuring the i.i.d. prop-

erty. It would be also interesting to study, for instance

by simulation, how departure from the i.i.d. property

impacts the accuracy of the results.

To some extent, it is possible in theory to relax

the i.i.d. assumption and consider some correlation

among the response times. It might thus enable us to

handle periodic tasks as well. The extent to which it

can be applied with the type of correlations one may

expect in real-time systems, for both periodic and ape-

riodic tasks, remains to be investigated.

Finally, it is worth mentioning that the same ap-

proach can be used to study other quantities of inter-

est, such as task execution times or inter-arrival times.

6 Appendix : Large deviation

theory - notations and reminder

Let us recall that (Ri,n) is the sequence of i.i.d. ran-
dom variables modelling the response times of τi,k

over successive activations andMn = 1
n

∑n

k=1 Ri,k .

The Cramer theorem states that:

− inf
x∈G◦

I(x) ≤ lim inf
n→∞

1

n
lnP (Mn ∈ G) ≤

lim sup
n→∞

1

n
lnP (Mn ∈ G) ≤ − inf

x∈Ḡ
I(x)

where G is any subset of R, with G◦ the open sub-

set and x ∈ Ḡ the closed subset. From the previous
inequalities, one derives

− inf
x∈G◦

I(x) ≤
1

n
lnP (Mn ∈ G) ≤ − inf

x∈Ḡ
I(x)

which gives us the behavior of the logarithm of the

quantity of interest. Taking the exponential, we obtain

e−n infx∈G◦ I(x) ≤ P (Mn ∈ G) ≤ e−n infx∈Ḡ I(x)

which, since in our case G is a subset of R, can be
simplified into

P (Mn ∈ G) ≍ e−n infx∈G I(x).
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