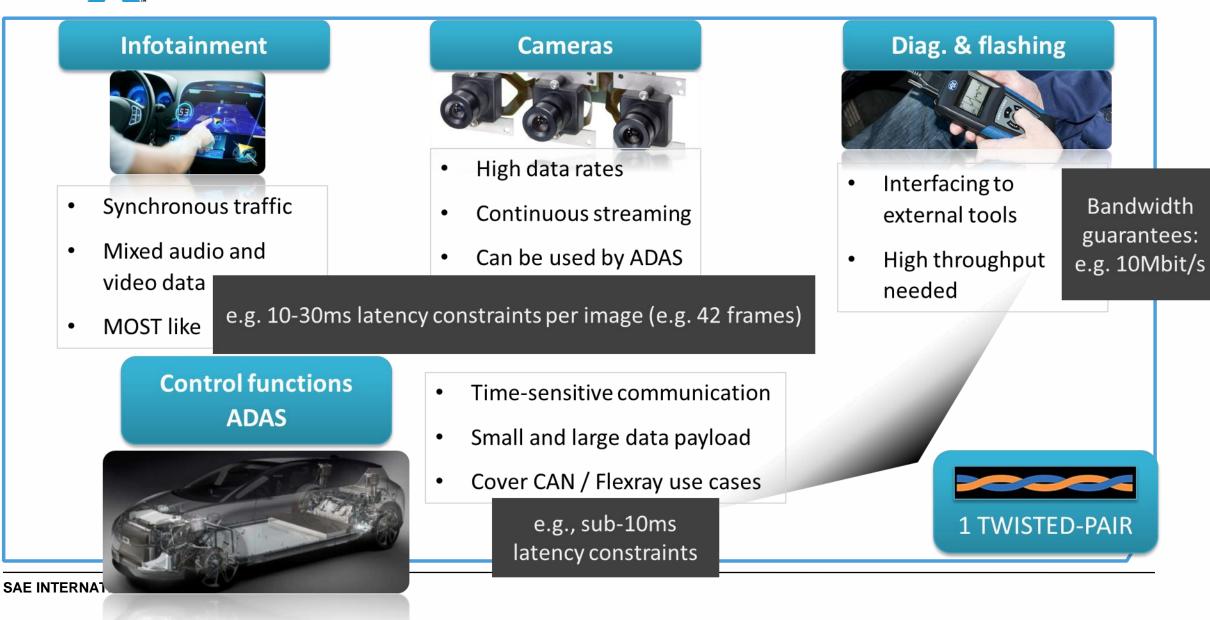


APRIL 10-12, 2018 • COBO CENTER • DETROIT, MICHIGAN

sae.org/wcx

Pre-shaping Bursty Transmissions under IEEE802.1Q as a Simple and Efficient QoS Mechanism


Nicolas NAVET, University of Luxembourg Jörn MIGGE, RealTime-at-Work (RTaW) Josetxo VILLANUEVA, Groupe Renault Marc BOYER, Onera

Use-cases for Ethernet in vehicles

WORLD CONGRESS EXPERIENCE

W

Main TSN QoS protocols on top of Ethernet

Temporal QoS = managing interfering traffic

Priority-based

IEEE802.1Q

8 priority levels for streams

Benefits:

✓ standard and simple

✓ efficient at the highest priority

✓ can be used with shaping in transmission ("pre-shaping")

Limitations:

 \checkmark not fine-grained enough to for all kinds of requirements

✓ starvation at lowest priority levels with bursty traffic

Traffic Shaping

AVB / Credit-Based Shaper (CBS)

Two egress queues shaped + 6 priority levels below

Benefits:

✓ Perf. guarantee for AVB classes
✓ No starvation for best-effort traffic

Limitations:

✓ Per class (not stream) shaping

✓ Not for control traffic

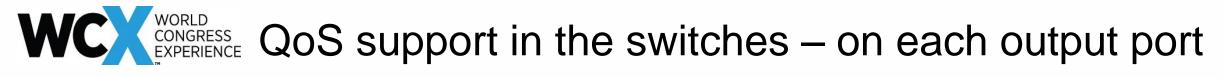
 ✓ Not flexible enough with standard configuration (CMI) Time-triggered (TT)

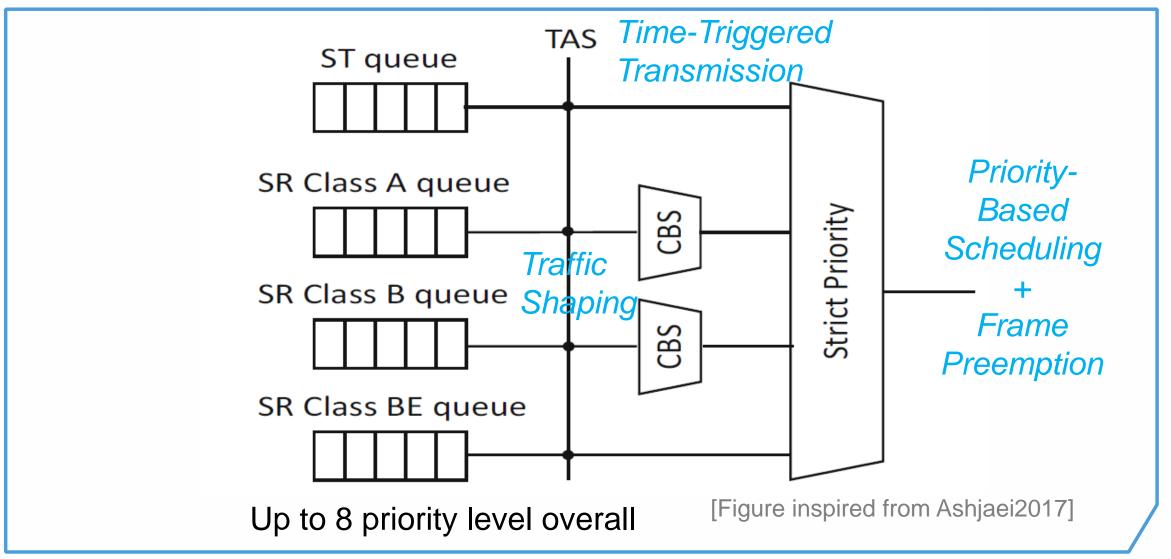
TSN / Time-Aware Shaper (TAS)

TAS defines egress ports' gate schedule (open/close)

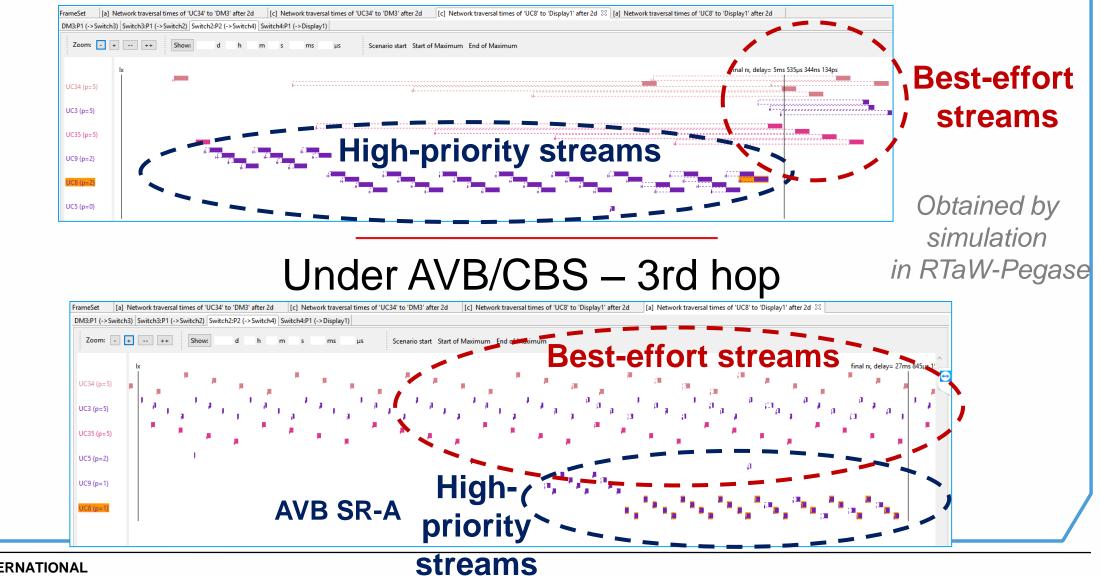
Benefits:

 ✓ Strong time constraints can be met


✓ Can be combined with AVB

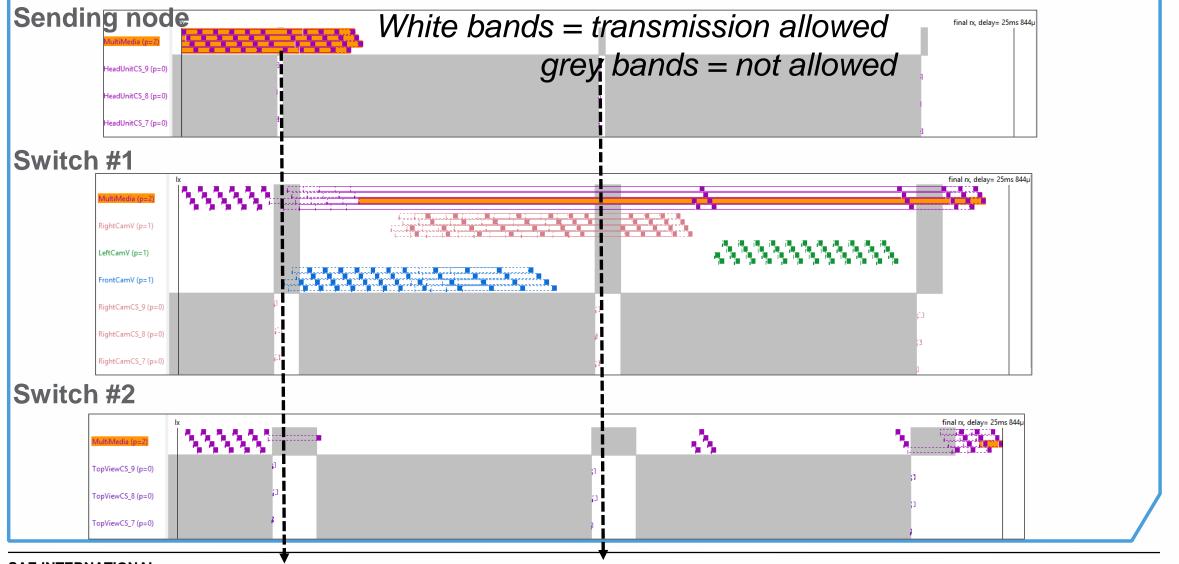

Limitations:

- \checkmark Hard to configure
- \checkmark Rely on a global clock
- ✓ Task sched. must be tailored to communication for best perf.

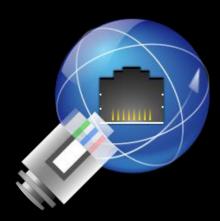


Temporal QoS = managing interfering traffic						
Priority-based		Traffic Shaping	Tin	Time-triggered (TT)		
IEEE802.10	5	AVB / Credit-Based Shaper (CBS)		N / Time-Aware Shaper (TAS)		
8 priority levels for streams		Two egress queues shaped + 6 priority levels below		TAS defines egress ports' gate schedule (open/close)		
Benefits:						
\checkmark standard and simple		In the picture too		s:		
\checkmark efficient at the highe	✓ Frame	e-preemption (Qbu+3br)		g time constraints can		
✓ can be used with sh transmission ("pre-sha	🗸 Async	hronous traffic shaping (• •	e combined with AVB		
Limitations:	✓ Cyclic	Queuing & Forwarding	(Qch)	ons:		
✓ not fine-grained enough to		✓ Per class (not stream) shaping	✓ Hard to configure			
for all kinds of requirements		✓ Not for control traffic	6			
\checkmark starvation at lowest priority			 Rely on a global clock 			
levels with bursty traffic		atandard appliquiration (CMI)		ask sched. must be tailored ommunication for best perf.		

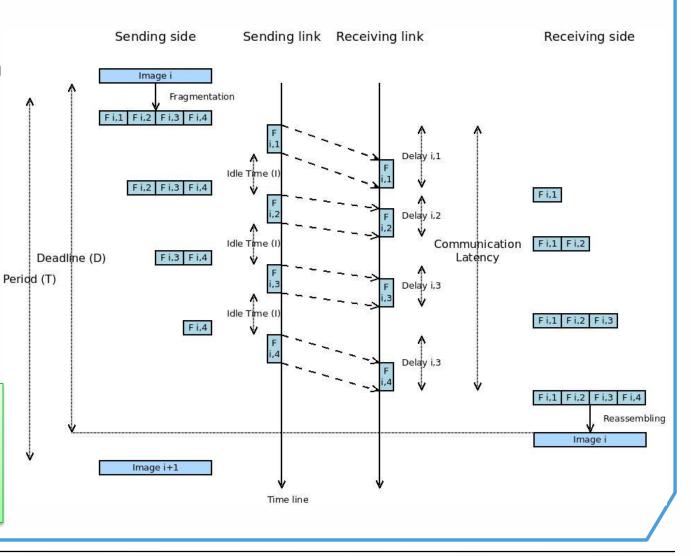
Under IEEE802.1Q – 3rd hop


SAE INTERNATIONAL

WC


WORLD CONGRESS EXPERIENCE

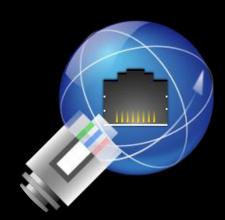
TSN/TAS: coordinating gate scheduling tables


Pre-shaping mechanism

IEEE802.1Q with pre-shaping in transmission

- Pre-shaping = inserting "wellchosen" minimum distance between frames of a segmented message on the sender side only – other characteristics of traffic unchanged
- Objective is to spread out transmissions to reduce latencies of lower priority traffic
- Pre-shaping typically applies to video streams to improve perf. of best-effort

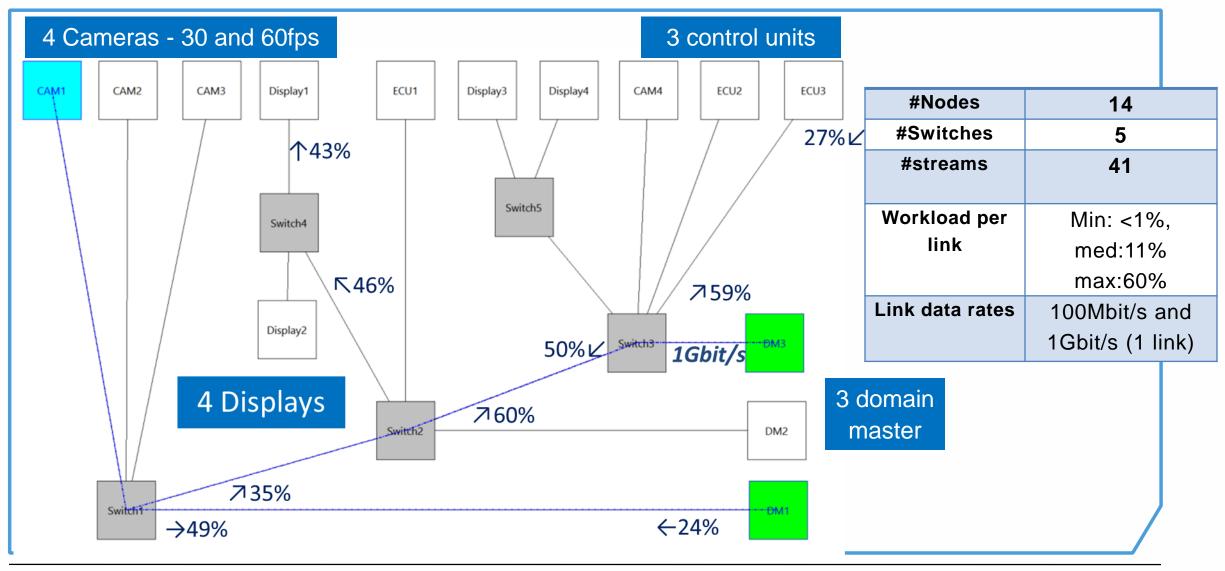
The last packet of the segmented message must be received by the deadline, typically 16.66ms for 60FPS camera


Pre-shaping in practice

- No need for dedicated HW unlike CBS & TAS, implemented in SW in end-systems
- Not part of TSN but not forbidden!
- Find <u>priorities and transmission pauses</u>
 between frames of segmented messages
 such that
 - all bursty frames subject to preshaping meet their deadlines,
 - while minimizing as much as possible the latency of frames in lower priority traffic classes

Setting idle-times by hand is not practical – "PRESH" algorithm in RTaW-Pegase automates it

Name	Priority	MinDistance	MaxSize	Sender	Receiver
UC27	0	10 ms	256 byte	CAM1	DM3
UC27	0	10 ms	256 byte	CAM1	DM1
UC33	0	10 ms	256 byte	CAM4	DM3
UC22	0	8 ms	1024 byte	DM1	ECU3
UC13	1	1,25 ms	256 byte	DM3	ECU2
UC14	1	1,25 ms	128 byte	DM3	ECU2
UC15	1	1,25 ms	128 byte	DM3	ECU2
UC16	1	1,25 ms	128 byte	DM3	ECU2
UC17	1	1,25 ms	128 byte	DM3	ECU2
UC18	1	1,25 ms	128 byte	DM3	ECU2
UC19	1	1,25 ms	256 byte	DM3	ECU2
UC23	1	1,25 ms	256 byte	ECU2	DM3
UC9	2	3 ms / 32 ms	10 x 1246 byte	DM3	Display2
UC8	2	1 ms / 32 ms	30 x 1446 byte	DM3	Display1
UC10	2	1 ms / 32 ms	30 x 1046 byte	DM3	Display3
UC11	2	1 ms / 32 ms	30 x 1046 byte	DM3	Display4
UC26	2	1 ms / 32 ms	30 x 1446 byte	CAM1	DM3
UC32	2	0,5 ms / 16 ms	30 x 1446 byte	CAM4	DM3
UC36	2	0,324 ms / 32 ms	30 x 1446 byte	CAM3	DM1
UC37	2	0,324 ms / 32 ms	30 x 1446 byte	CAM2	DM1

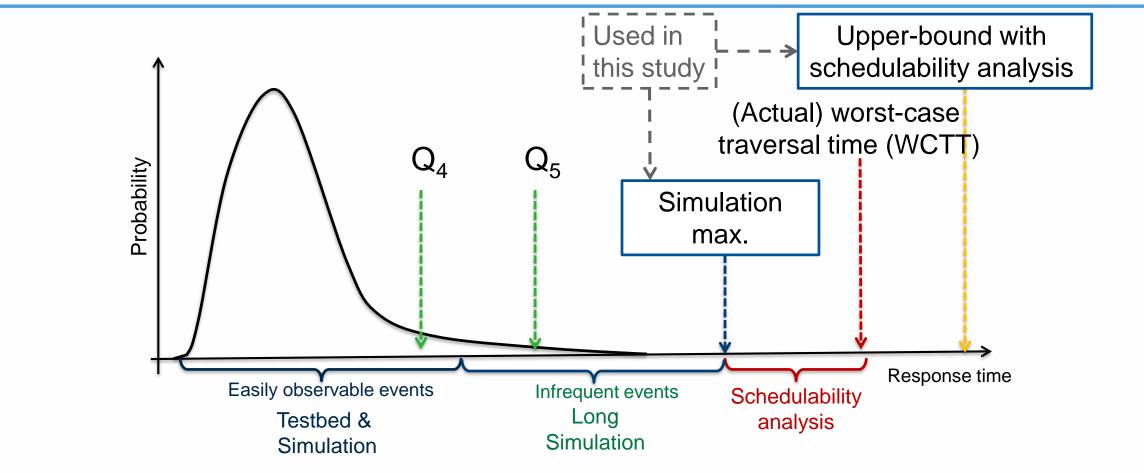


Case-study

Renault Ethernet prototype network

Case-study: 4 types of traffic

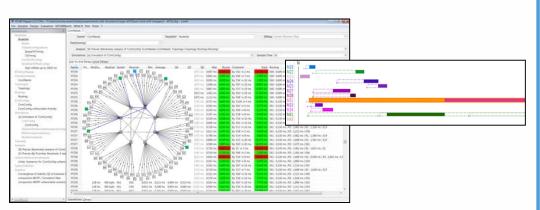
	Audio streams	 8 streams 128 and 256 byte frames up to sub-10ms periods and deadlines 						
Ī	Video Streams	 soft deadline constraints 2 ADAS + 6 Vision streams up to 30*1446byte frame each 16ms (60FPS) or each 33ms (30FPS) 10ms (ADAS) or 30ms 		re-sha nsmiss				
- 1		deadline (Vision)	Name	Priority	MinDistance	MaxSize	Sender	Receiver
- 1		 hard and soft deadline constraints 	UC9	2	3 ms / 32 ms	10 x 1246 byte	DM3	Display2
_ <u>-</u>	Command & Control	 II streams, 256 to 1024 	UC8	2	1 ms / 32 ms	30 x 1446 byte	DM3	Display1
	command a control	byte frames	UC10	2	1 ms / 32 ms	30 x 1046 byte	DM3	Display3
		• up to sub-10ms periods	UC11	2	1 ms / 32 ms	30 x 1046 byte	DM3	Display4
		and deadlines	UC26	2	1 ms / 32 ms	30 x 1446 byte	CAM1	DM3
		• deadline constraints (hard)	UC32	2	0,5 ms / 16 ms	30 x 1446 byte	CAM4	DM3
	Best-effort: File, data	• 14 streams including TFTP	UC36	2	0,324 ms / 32 ms	30 x 1446 byte	CAM3	DM1
	transfer, diagnostics	traffic pattern	UC37	2	0,324 ms / 32 ms	30 x 1446 byte	CAM2	DM1
		 up to 0.2ms periods both throughput guarantees (up to 20Mbits per stream) and deadline constraints (soft) 			shaping the 8 vic	-		



WC CONGRESS EXPERIENCE Case-study: IEEE802.1Q priorities

БСУП	Command & Control (C&C)	Top priority	
Feb.	Audio Streams	Second priority level	Decreasing
F.	Video Streams	Third priority level	
	File & data transfer, diag.	Best-effort	orities
			• /

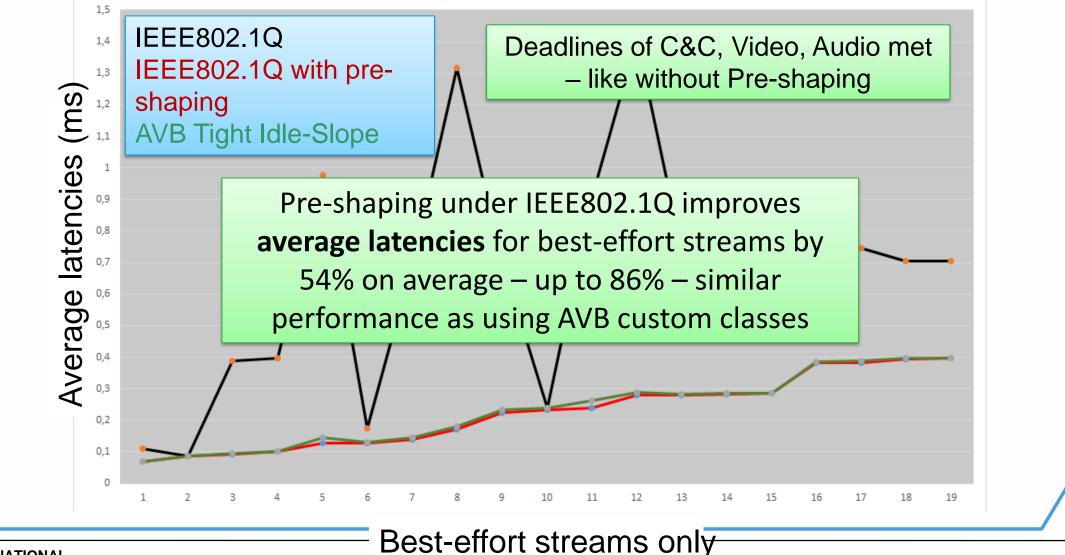
Verification techniques



- ✓ Long simulation here = 48 hours of driving \rightarrow 350 000 transmissions for 500ms frames
- ✓ Metrics: communication latencies, bandwidth usage and buffer occupancies

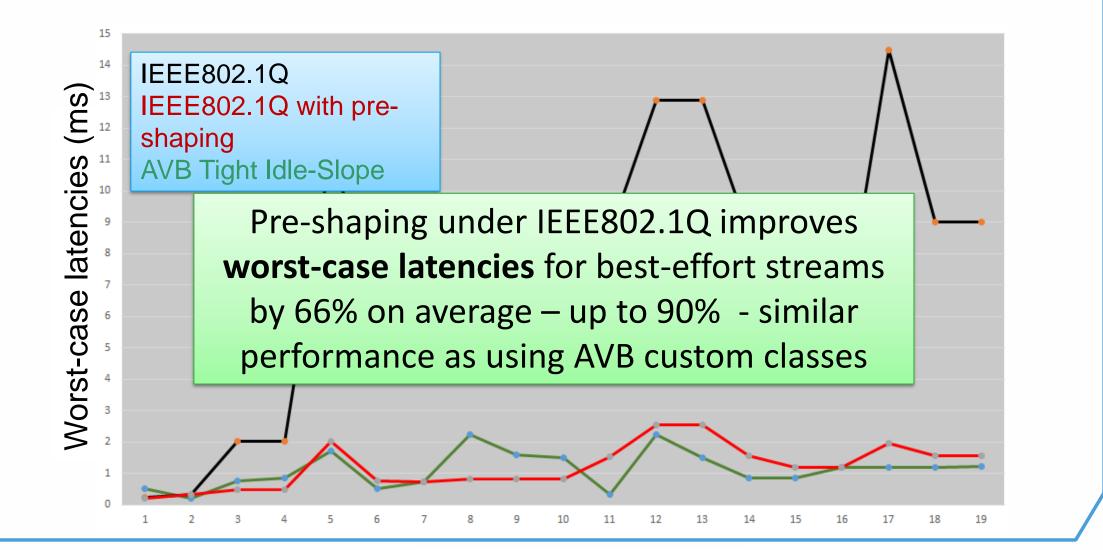
Toolset & Techniques

- *RTaW-Pegase*: modeling / analysis / configuration of Ethernet TSN (automotive, avionics, industry) + CAN (FD)
- Developed since 2009 in partnership with Onera

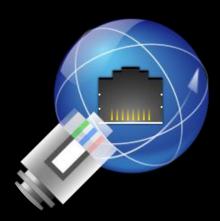

– Users across several industries, e.g; Daimler Cars, Airbus Helicopters, CNES, ABB

Techniques used

- Worst-case Traversal Time (WCTT) analysis used for deadline constraints
- Timing-accurate Simulation used for average & throughput constraints
- **Optimization algorithms** for setting the parameters of all supported protocols



IEEE802.1Q with pre-shaping for Video Average latencies for best-effort streams



IEEE802.1Q with pre-shaping for Video Worst-case latencies for best-effort streams

Best-effort streams only

Discussion & conclusion

- Simple, compatible with standard IEEE801Q HW and as effective as AVB/CBS in our experiments but
- 1. No protection against "babbling idiots" unlike CBS and TAS per stream policing of Qci could offer a solution
- 2. Adding frames to the system may require a reconfiguration of all flows subject to preshaping (unlike AVB with standard parameters)
- 3. Setting pre-shaping parameters requires dedicated tool support
- 4. As there is no reshaping along a path, efficiency decreases with the number of hops
- Pre-shaping is an additional specification to ECU suppliers which has a cost for OEMs, but pre-shaping can be implemented on a subset of nodes only (e.g., 5 out of 14 in our case-study)

APRIL 10-12, 2018 • COBO CENTER • DETROIT, MICHIGAN

sae.org/wcx

Any questions? Contact us nicolas.navet@uni.lu jorn.migge@realtimeatwork.com