Signal-Oriented ECUs in a Centralized Service-Oriented Architecture: Scalability of the Layered Software Architecture

Hoai Hoang BENGTSSON & Martin HILLER Volvo Cars Sweden

Jörn MIGGE RealTime-at-Work (RTaW)

Nicolas NAVET Uni. Luxembourg & Cognifyer

Automotive Ethernet Congress 2022, Volvo SoA

2022-06-01

Agenda

Introduction of SOA architecture – Challenges

Service interface communication model

Modelling of the system

Performance evaluation

Conclusion

Introduction of SOA in next generation architecture

Centralized E/E Architecture with Ethernet Backbone

The VCU coordinates fundamental capabilities in the Mechatronic Rim to provide vehicle level behavior. For example: vehicle dynamics, propulsion control, climate control, exterior lighting, interior lighting, ... A VIU provides a translation from the specific network interfaces of the nodes in the Mechatronic Rim to the Core Network. Think "Gateway"... IHU **ADPM** VCU .ow Powei Controller VIU Left An ECU in the Mechatronic Rim is highly specialised for VCU: Vehicle Computation Unit controlling its specific device. For example: engine, VIU: Vehicle Integration Unit ADMP: Autonomous Driving Primary Module transmission, brakes, steering, doors, windows, seats, ... IHU: Infotainment Head Unit

2022-06-01 Au

V O L V O

SW Layering Architecture

Device: One or more ECUs, sensor or actuator in the Mechatronic Rim which are connected to the Core System as one unit.

- **Functional interface:** Accessing the (payload) functionality provided by a device.
- Administrative interface: Accessing diagnostics, software download, network management, and power management.

Devices and proxies and services, Oh my...

Layering Architecture Concept - Challenges

How to efficiently transform signals to services? What are suitable services that a device can provide?

What communication model is suitable for our architecture choice?

How the design choices affect the system performance?

Service interface communication model

Timing chains from sensor to actuator comprise several successive "segments" : data transmission and functions execution

V О L V О

Where do end-to-end delays come from ?

- 1. Delays come from processors and network loads \rightarrow f (frequencies, transmission and execution times)
- 2. Burstiness of the load
- 3. <u>Waiting times</u> between successive tasks and messages of a timing chain \rightarrow *our focus*

Periodic activations reduce loads!

- ✓ Several signals into same frame
- ✓ Periodic tasks and "Publisher-Subscribers" services → execution rate under control

Event-Triggered (ET) activations reduce latencies!

- No waiting times between segments of a timing chain
- ✓ Apps call services whenever needed and get responses asap (ODS: "On-Demand Service" next)

V O L V O

Choice of activation model at several levels

Service Interface Publisher-Subscriber model (subscribers are updated e.g. periodically by server) or Client-Server model (ODS) ?

Updating signal database Device Proxy executed periodically or triggered by ETH packet ?

Forwarding on ETH Periodic ("snapshots") or ET transmission when CAN frame arrives at VIU ? Transmission on CAN Periodic or ET transmission on signal's update?

Design options compared next

- Service level: publishersubscriber model ("PubSub") with periodic events
- Task execution + CAN and ETH frames are periodic

Simplifications:

- Safety constraints are not discussed
- PDUs are kept out of the picture as far as possible

Fully eventtriggered model

- Service level: ODS
- CAN frame arriving at a VIU triggers ETH packet
- Signal production triggers CAN frame

- Periodic model for <u>non-</u> <u>time-critical timing chains</u>
- Event-triggered model <u>for</u> <u>time-critical timing chains</u>

Metric for performance evaluation : max # of timing chains supported

System Model & Performance evaluation

VOLVO

System Model : network

✓ Modelling and simulation with RTaW-Pegase / SDV

Links Speed	ETH: 1Gbps CAN FD: 2Mbps or T1S: 10Mbps	
Sampling Period	10ms and 50ms	
	End-to-end	
Timing	deadlines set to 4x	
Chains	(25%) or 10x	
	sampling period	

[RTaW-Pegase screenshot]

V O L V O

System model : flows of data between functions

Excerpt of the <u>functional architecture</u> with a timing chain highlighted
Apps are subscribed to several services and thus participate in

several timing chains

ECU D. proxy Service Apps Core1 Core2 Core3 Core4 screenshot] SDV RTaW-Pegase

 Data exchange
 Segment of the timing chain selected

Executable

Breakdown of an end-to-end delay: periodic + PubSub service

Breakdown of an End-to-end Delay: periodic + PubSub service

Delays of a timing chain's segments

TimingChain ECU8.P 50.sens1->ECU15.HP1.App 5.P50.act0* $\mathbf{1}$ Segment Min Average Max 皀 ECU8.P 50.sens1 0.010 ms 0.045 ms 0.080 ms 4. 'ECU8.P_50.sens1signal' waiting 29.921 ms 29.957 ms 29.992 ms -----Tx over 'CAN8' 0.341 ms 0.212 ms 0.213 ms Gatewaying delay in 'VIU1' 0.000 ms 2.500 ms 5.000 ms PduUdpTxBuffer 0.000 ms 2.849 ms 5.000 ms -----VIU1-> Switch1 0.067 ms 0.177 ms 0.346 ms 0.176 ms -----Switch1-> HP1 0.067 ms 0.553 ms 6 'ECU8.P 50.sens1signal' waiting 0.000 ms 2.496 ms 5.319 ms 6 HP1ECU8.DPsens.P5 0.020 ms 0.190 ms 0.360 ms 'ECU8.P 50.sens1signal.DP' waiting 2.640 ms 25.606 ms 48.671 ms 6 8 HP1.sensHAL33.P50 0.010 ms 0.356 ms 0.700 ms ٢ 'HP1.sensHAL33.P50.signal' waiting 0.000 ms 32.630 ms 50.471 ms 6 HP1.App 5.P50 0.010 ms 0.251 ms 0.500 ms Û 'HP1.App 5.P50.act0signal' waiting 0.690 ms 0.960 ms 1.180 ms 8 HP1.App_5.P50.act0.Hal 0.941 ms 0.700 ms 1.190 ms 6 HP1.App 5.P50.act0.HAL.signal' waiting 3.310 ms 3.900 ms 4.591 ms Ċ HP1.FCU15.DPactP5 0.020 ms 0.170 ms 0.320 ms $J_{p^{\ast}}$ 'HP1.App_5.P50.act0.DP.signal' waiting 19.940 ms 49.830 ms 49.981 ms -----PduUdpTxBuffer 5.000 ms 5.000 ms 5.001 ms 0.650 ms ----HP1-> Switch1 0.620 ms 0.678 ms Switch1-> VIU2 0.285 ms 0.295 ms 0.312 ms Gatewaying delay in 'VIU2' 0.000 ms 2.500 ms 5.000 ms -----Tx over 'CAN15' 0.091 ms 0.092 ms 0.203 ms 3 'HP1.App 5.P50.act0.DP.signal' waiting 0.000 ms 24.702 ms 50.028 ms ECU15.HP1.App_5.P50.act0 1 0.010 ms 0.030 ms 0.050 ms

[RTaW-Pegase screenshots]

Name
ECUIA P 10 cops3->ECUI33 HP1 App19.1 10.0000
EC040.P_10.SellS3->EC035.HP1.App19.P10.act0*
HP1.App20.P1000->ECU22.HP1.App20.P1000.act0*
ECU6.P_50.sens2->ECU1.HP1.App21.P50.act0
ECU14.P_50.sens4->ECU1.HP1.App21.P50.act0*
ECU26.P_50.sens1->ECU1.HP1.App21.P50.act0
ECU31.P_50.sens2->ECU1.HP1.App21.P50.act0*
ECU10.P_10.sens2->ECU24.HP1.App22.P10.act0
ECU13.P_10.sens6->ECU24.HP1.App22.P10.act0*
ECU27.P_50.sens3->ECU24.HP1.App22.P10.act0
ECU30.P_10.sens4->ECU24.HP1.App22.P10.act0
ECU9.P_50.sens1->ECU6.HP1.App23.P10.act0
ECU15.P_50.sens2->ECU6.HP1.App23.P10.act0
ECU27.P_50.sens1->ECU6.HP1.App23.P10.act0
ECU30.P_10.sens4->ECU6.HP1.App23.P10.act0*
ECU6.P_50.sens3->ECU7.HP1.App24.P10.act0

End-to-End delays sampling period

	Min	Average	Max	LatencyConstraint
0*	18.493 ms	40.977 ms	59.258 ms	40 ms
ct0*	999.703 ms	1141.125 ms	1282.246 ms	4000 ms
	106.003 ms	169.006 ms	207.168 ms	500 ms
*	82.594 ms	159.388 ms	228.761 ms	→ 200 ms
	83.439 ms	135.081 ms	194.531 ms	500 ms
*	81.139 ms	164.284 ms	229.592 ms	→ 200 ms
0	32.656 ms	55.191 ms	75.619 ms	100 ms
0*	27.804 ms	49.407 ms	66.863 ms	40 ms
0	38.017 ms	60.155 ms	79.727 ms	500 ms
0	32.446 ms	54.230 ms	71.966 ms	100 ms
	41.766 ms	64.193 ms	81.945 ms	500 ms
	52.499 ms	74.189 ms	92.237 ms	500 ms
	36.500 ms	59.184 ms	79.732 ms	500 ms
*	30.902 ms	53.334 ms	71.631 ms	40 ms
	72.752 ms	93.905 ms	111.702 ms	500 ms

Periodic activations may be a solution only if the end-to-end latency constraints are several/many times larger than the sampling periods

V O L V O

Event Triggered (ET) activation + ODS for **critical** chains

Step	Activation Mechanism	Max. Waiting Times	Detrimental impact of triggering
Sensor Task	Periodic tasks	none	
CAN	Signals trigger CAN frame	none	higher bus and CPU loads
Ethernet	CAN frame trigger ETH frames	none	higher links and CPU loads
DP	Periodic tasks	period	
Service	Service <u>Method</u> call (ODS)	period	higher load and larger response times
Арр	Periodic tasks	none	
Service	Service Method call	none	
DP	Periodic tasks	period	
Ethernet	PDUs trigger frames	none	higher links loads
CAN	PDU triggers CAN frame	none	higher bus loads
Actuator Task	Periodic tasks	period	

Improvements in terms of waiting times

Periodic + PubSub *versus* ET + ODS

Mixed model is the best option in our case-study

of executables Each executable involved in 6.5 timing chains on avg

Time between

forwarding CAN frames

with/wo jitter reduction

(Davis & Navet, 2012

Takeaways

Presented technical solutions explored by Volvo to integrate signal-based ECUs in a zone-based SOA

Choice of activation patterns is key to meeting load and timing requirements: mix of both periodic and ET offers best solution → automation through DSE algorithms ET activation creates coupling between segments as jitters/bursts are propagated → unwanted coupling between subnetworks, between network and SW development!

> Local jitter-reduction shaping strategies may allow to preserve independence

Thank you for your attention!

