Time-Predictable Communication in Service-Oriented Architecture -

What are the challenges?

Cognifyer is the research lab of RTaW

Interested in this study? Please contact

nicolas.navet@cognifyer.ai

Cognifyer

Hoai Hoang Bengtsson *Volvo Cars Sweden* Nicolas Navet *Uni. Luxembourg & Cognifyer*

Automotive Ethernet Congress 2023 | © Volvo - Cognifyer - UL 2023-03-21

Agenda

Determinism vs Predictability

Zone-Based Architectures

Timing Accurate Models

Takeaways on V&V

A look forward

Challenges in the design of timing predictability architectures

Deterministic vs. Real-time System

Deterministic System

- is a system which, *given the same set of inputs and initial state, will always produce the same outputs*.
- In the context of in-vehicle network, deterministic communication is the capability of the network to deliver a message at a specified time, not faster or slower.

Real-time system

- Is a system in which correctness depends not only on the output value but also *the time at which results are produced*
- In real-time communication, network has capability of deliver a message within a period, referred to as bounded delay

Vehicle is a complex real-time system!

Zonal Architecture

Integrating VIUs, power distribution and mechatronic ECUs into zone controllers

From complete vehicle perspective, we want to guarantee bounded delay for hard real-time application

Example use Case: brake system

Challenges in the design of timing predictable architectures

Intrinsic complexity of systems and technologies

- # of functions, signals, services, flows
- Technology selection & configuration
- Mixed legacy / next-gen: e.g., signals to services
- Multi-tier dev. process, product lines, ...

New business models based on SW

• Now and in the future, How to future-proof an E/E architecture ?

Besides TSN ?

- Predictability of complex execution platforms (e.g., Autosar Adaptive) and complex SoCs ?
- Which SOA? SOME IP, DDS, Iceoryx, Ecal?

Mixed criticality with TSN

- Network engineering
- Fail-operational requirements
- Verification & Validation

Timing predictability requires controlling interfering activities

on a single resource, e.g. an ETH link Sensor Sensor Actuator timing chain

Interferences from higher / lower / samepriority traffic Interferences from one segment of a timing chain to another: triggered transmissions, timeouts, ..

Solution: temporal isolation, total or partial partitioning in the time domain

- Apply TSN QoS mechanisms
 - Priorities, preemption or TAS to protect from lower-priority traffic
 - <u>TAS</u> to contain uncontrolled traffic in dedicated time slots
 - <u>CBS</u> to limit the interference of a medium-priority class with bursty streams
- Periodic transmissions & executions .. at the expenses of latencies
- Jitter-aware triggering mechanisms possible

. . .

Guaranteeing timing predictability requires timing accurate models

The need for timing accurate models of the system

System must be timing predictable, and we need timingaccurate models of it too

 \neq kinds of models for \neq perf. metrics

- \checkmark Models of the worst-case or typical-case behavior
- ✓ Latencies, jitters, throughput, memory usage, reliability
- ✓ Formalisms: Network-Calculus, sched. analysis, discrete event simulation

Models must be a) accurate enough and b) require reasonable computational efforts

a) E.g., no accurate models of the worst-case behavior of TCP streamsb) Simulation models may not be computationally efficient for rare events

Combining timing verification techniques along the dev. process

Simulation

Typical Case Behavior

✓ Functional simulation ✓ Timing-accurate simulation of ECU, networks, system level w/wo fault-injection

✓ Model / SW / CPU / HW in-the-loop

Formal Verification

Worst Case Behavior & Rare Events

✓ Worst-Case Execution Time analysis

✓ Worst-Case Response Time analysis: ECU, buses, system level

 $K_i^k(t) \stackrel{\text{def}}{=}$ that may accumulate at t.

Measurements

✓ Execution time measurements

✓ Off-line trace analysis

- ✓ Runtime monitoring
- ✓ Integration tests

max, number of instances $in[t_c, t_c + t]$ (7)✓ Reliability analysis "Early stage" "Project" "Real" Configuration & Model-Based Technological Refine and validate & Architectural choices Verification models & impact of non-conformance

Combining timing verification techniques

Takeaways from timing verification in automotive

VOLVO

Observation #1: Worst-case temporal scenario is out of reach of simulation, schedulability analysis is needed

Flows sorted by increasing worst-case latencies

Fig. from "Timing verification of real-time automotive Ethernet networks: what can we expect from simulation?"

15

Observation #2: worst-case timing analysis will not cover all invehicle communication technologies, e.g. TCP

Solution: build "temporal firewalls" to control interference of non-analysable traffic

- 1. Isolate non-analysable traffic <u>at lowest</u> priority, in dedicated TAS slots or CBS <u>classes</u> & verify it with simulation
- 2. Worst-case schedulability analysis can be applied on the rest of the traffic

Simplified example automotive communication stack

Simulation, analysis and a "verification-aware" configuration strategy are needed – could the same strategy be applicable for complex execution platforms on SoCs ?

Observation #3: Worst-case analysis gives limited insight about what goes wrong .. analysing worst simulated scenario is helpful

Observation #4: models (and their parameters) can be either accurate or approximate, and will fulfil ≠ use-cases

- 1. <u>Fine-grained vs coarse-grained models</u>: HW, protocols, MW, OS services, Apps, ...
- 2. <u>Precise vs approximate model parameters</u>: traffic patterns, knowledge of all or part of the traffic, ...

Approximate models

- \checkmark Not for verification!
- ✓ Support early-stage design choices
- ✓ Parameter settings corresponding to ≠ scenarios can be considered

Accurate models and parameters

- \checkmark Suited for verification
- But conservative load assumptions not usable in automotive!
- ✓ Possible solution: refine parameters with trace analysis

"Early stage"

"Project"

Configuration & Verification

Refine models & impact of non-conformance ¹⁸

Conclusion

Zone-based architecture explored by Volvo & challenges to timing predictability

Timing predictability through temporal firewalls between transmissions subject to ≠ requirements → TSN offers solutions with priorities, CBS, TAS and preemption Complexity of next-generation execution platforms is a threat to timing predictability → clear V&V strategy throughout the dev. process

> Design decisions should be made with the understanding of the timing guarantees that that can be obtained and how

Thank you for your attention!

VOLVO

