DDS over TSN: configuring TSN to
meet DDS-level QoSes

©2024 Real-Time Innovations, Inc and RealTime-at-Work




Software-defir ed vehlcle Architecture

Connext Drive Cloud Databus
Telematics
Control Unit
Connext Drive HPC Databus
Digital Cockpit Vehicle ADAS/AD HPC
HPC Control HPC DAS/AD HP

DSS Zonal Architecture Databus

| |
PUIN T Tenene, B RPN SRR

ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU ECU

Sensors & Actuators

©2024 Real-Time Innovations, Inc.



Communication framework based on DDS
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Designing Distributed Systems with DDS
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Designing Distributed Systems with DDS

A Dats nde N DS provides an API O
he ~ data 2 proare
em and allo DDS to A =19 alliguagc ﬁ
AE AaNd anag anage gats DINAing O Cllabic
em appropriate N da . DD
0 0
D)3 O 0
eNnaApac oV DD
DDS O
0 er o 0 0 DDS ope
0 00 0 0 N el
>10]0]g0]0
ode/peer date
4 0 or 0
0 0 ¢ 0
0 0
0 bullo 0
0




DDS QoS Policies
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Extending DDS Communication via TSN
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DDS + TSN Integration
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Configuring DDS Extensions for TSN
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New Standard Extensions
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Deploying a DDS System Over TSN
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DDS + TSN

TSN is becoming important in different
markets, especially in automotive, industrial
automation, and avionics.

— Customers requesting integration with DDS

TSN opens new possible use cases for DDS

— Helps guarantee QoS Policies, such as those
that aim to ensure reliability and bounded
latencies at the data-link layer

OMG has recently published a standard that
defines:

“a set of mechanisms to allow DDS
infrastructures to be deployed on, and
leverage, TSN-enabled networks.”
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DDS Extensions for Time Sensitive Networking
(DDS-TSN)

Version 1.0 - beta 1

https://www.omg.org/spec/DDS-TSN
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DDS Quality of Service Properties mIE\AY

RealTime-at-\Work:

®* The DDS middleware compares required and offered QoS properties to
match data writers and data readers. Here we will focus on

— Deadline QoS -> periodicity of sample updates
— LatencyBudget QoS -> latency constraint on network traversal time

®* The fulfillment of the QoS is monitored online and can be queried by the
applications.

* But if the underlying network resources are insufficient in certain
circumstances, the DDS middleware can detect QoS violations and call
handlers to deal with the fault situation, but it can do little to prevent them.

®* The network design must guarantee upfront that network resources are
sufficient under all circumstances.

® TSN and related scheduling mechanism can heI]P to achieve these
guarantees, but Worst-Case Analysis is needed for verification.



TSN Scheduling mechanisms R 1avVv

Which are relevant ﬁTSN—)ScheduIing mechanisms
and what do they allow to achieve?

Scheduling mechanism Useful effects Notel:

Priorities lower delays for critical frames, by assigning them to traffic TAS can also be used for
classes with a higher priority bandwidth partitioning
TAS, Preemption reduced “head-of-line” blocking

= even lower delays for critical frames

CBS, ATS spreading out transmission of bursty traffic Note 2:
= reduced delays of lower priority traffic Pre-shaping is useful for
= reduced memory requirement in switches CBS shaping of streams

Pre-shaping spreading out of queuing of bursty traffic at network with same source but
ingress, as for example with Tspec / CMI rules different destinations (not
= reduced memory requirement in ingress queues needed with ATS)

But how do we verify that a TSN network configuration meets all timing related QoS?



Probability

Simulation & Worst-Case Analysis R I1avVv

Probability distribution of network traversal time (latencies)
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Worst-Case Analysis S TaVV

RealTime-at-\Work:

®* TSN and related scheduling mechanisms are helpful, but alone, they do
not allow to guarantee the fulfillment of QoS requirements.

* Simulations provide insights about typical delays

— If an observed delay is Iarﬁer than the LatencyBudget
= we can conclude that the design is insufficient

— If all delays are smaller than the LatencyBudgets
= inconclusive: there could exist a worse scenario

®* Through upper bounds, Worst-Case Analysis can provide guarantees

®* Worst-Case analysis = mathematical model based on
1. characteristics of network resources: topology, link speed, ...
2. characteristics of the streams: topic sizes, period, ...

* |f all upper bounds < LatencyBudget = OK



Automotive inspired sample
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RealTime-at-\Work:
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DDS driven frames R Tavv
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Mapping of topics to frames

DDS frame mapping

R TaVWVW

RealTime-at-\Work:

Every topic update triggers the transmission of a separate frame

uni-cast, multi-cast, multi-unicast

DDS max message size can be configured to avoid IP fragmentation
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TAS / Preemption: reduced “head-of-line” blocking
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RealTime-at-\Work:

Bound Constraint

ECU1 ImageProcessing 0,6 ms

Display3 Display3 0,55 ms

Bound Constraint
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CBS, ATS: reduced delays at lower priorities B3 1aVV
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CBS, ATS: reduced memory usage in switches HIaWk

Frame Queue Memory Bounds: Shaped Video Class
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Conclusions R I1avVv

TSN scheduling mechanisms can help

— meeting time-related QoS requirements
— optimize the usage of network resources

* |f the configuration of TSN scheduling mechanisms is
combined with worst-case analysis for verification, then

QoS requirements can be guaranteed
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