
Multi-source software on multicore automotive
ECUs - Combining runnable sequencing with task

scheduling
Aurélien Monot, Nicolas Navet, Bernard Bavoux and Françoise Simonot-Lion

Abstract—As the demand for computing power is
quickly increasing in the automotive domain, car manu-
facturers and tier-one suppliers are gradually introducing
multicore ECUs in their electronic architectures. Addi-
tionally, these multicore ECUs offer new features such
as higher levels of parallelism which ease the compliance
with safety requirements such as the ISO 26262 and
the implementation of other automotive use-cases. These
new features involve greater complexity in the design,
development and verification of the software applications.
Hence, car manufacturers and suppliers will require new
tools and methodologies for deployment and validation. In
this paper, we address the problem of sequencing numer-
ous elementary software modules, called runnables, on a
limited set of identical cores. We show how this problem
can be addressed as two sub-problems, partitioning the set
of runnables and building the sequencing of the runnables
on each core, which problems cannot be solved optimally
due to their algorithmic complexity. We then present low
complexity heuristics to partition and build sequencer
tasks that execute the runnable set on each core. Finally,
we address the scheduling problem globally, at the ECU
level, by discussing how to extend this approach in the case
where other OS tasks are scheduled on the same cores as
the sequencer tasks.

I. INTRODUCTION

Multi-source software running on the same ECU
(Electronic Control Unit) is becoming increasingly
widespread in the automotive industry. One of the main
reasons being that car manufacturers want to reduce the

A. Monot is with LORIA/INPL and PSA Peugeot-Citroën, 615
rue du Jardin Botanique, 54600 Vandoeuvre, France, e-mail: aure-
lien.monot@inria.fr.

N. Navet is with INRIA and RealTime-at-Work (RTaW), 615
rue du Jardin Botanique, 54600 Vandoeuvre, France, e-mail: nico-
las.navet@inria.fr.

B. Bavoux is with PSA Peugeot-Citroën, route de Gisy, 78 943
Vélizy-Villacoublay, France, e-mail: bernard.bavoux@mpsa.com.

F. Simonot-Lion is with LORIA/INPL, 615 rue du Jardin
Botanique, 54600 Vandoeuvre, France, e-mail: simonot@loria.fr.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

number of ECUs which grew up above 70 for high-end
cars. One major outcome of the AUTOSAR initiative,
and more specifically of its operating system, is to help
car manufacturers shift from the “one function per ECU”
paradigm to more centralized architecture designs by
providing appropriate protection mechanisms.

Another crucial evolution in the automotive industry
is that chip manufacturers are reaching the point where
they can no longer cost-effectively meet the increas-
ing performance requirements through frequency scaling
alone. This is one reason why multicore ECUs are being
gradually introduced in the automotive domain. The
higher level of performance provided by multicore ar-
chitectures may help to simplify in-vehicle architectures
by executing on multiple cores the software previously
run on multiple ECUs. This possible evolution towards
more centralized architectures is also an opportunity for
car manufacturers to decrease the number of network
connections and buses. As a result, parts of the com-
plexity will be transferred from the electrical/electronic
architecture to the hardware and software architecture of
the ECUs. However, static cyclic scheduling makes it
easy to add functions to an existing ECU. In practice,
important architectural shifts are hindered by the carry-
over of ECUs and existing sub-networks which is widely
used by generalist car manufacturers. The extent to
which more centralized architectures will be adopted
remains thus unsure.

Multicore ECUs are also helpful for other use
cases. For instance, they bring major improvements
for some applications requiring high performance such
as high-end engine controllers, electric and hybrid
powertrains[1], [2], advanced driver assistance sys-
tems [3] sometimes involving real-time image process-
ing [4]. Those multicore platforms offer also additional
benefits, such as higher level of parallelism allowing
for more segregation, which may help to meet the
requirements of the upcoming ISO 26262 that concerns
functional safety for road vehicles. Furthermore, in mul-
ticore architectures, some core can be dedicated to a
specialized usage such as handling low-level services.



Now, the challenge is to adapt existing design methods
to the new multicore constraints. The scheduling of the
software components is one of the key issues in that
regard and it has to be revamped.

Introduction of multi-source and multicore will induce
drastic changes in the software architecture of automo-
tive ECUs. The section II of this paper introduces the
most likely scheduling choices as well as the literature
relevant to the task scheduling in multiprocessor automo-
tive ECUs. Then, section III presents solutions for the
scheduling of numerous software modules when only a
few OS tasks are allowed. This paper builds on the study
published in [5] where it was assumed that only one
sequencer task was running on each core of the ECU to
schedule the runnables. Here, we consider in section V
how to build several sequencer tasks while possibly
scheduling other tasks on the same core and discuss how
to analyze the schedulability of such systems globally.

From now on, for the sake of clarity, we refer to
“sequencing” when talking about the scheduling of
runnables while “scheduling” is solely used for tasks.

II. SCHEDULING IN THE AUTOMOTIVE DOMAIN

A. Scheduling design choices for multicore ECUs

In this section, we explain and justify, especially in
the light of predictability requirements, the multicore
scheduling approach that is, to the best of our knowledge,
the most widely considered in the automotive industry.

1) Partitioning scheduling scheme: In a multicore
system, the tasks are either statically allocated to the
cores or they can be distributed dynamically at run-
time to balance the workload or migrate functions to
increase availability. The later approach involves com-
plex task and resource interactions which are difficult to
predict and validate. For this reason, approaches relying
on static allocation (i.e., partitioning) and deterministic
mechanisms such as periodic cyclic scheduling are more
likely to be used in the automotive context and this
is the option taken within the AUTOSAR consortium.
Scheduling tasks on a multi-processor systems under the
static partitioning approach has been well studied for a
long time, see for instance [6] and [7], [8], [9]. However,
the works we are aware of deal with online algorithms
such as FPP or EDF, and do not consider the static cyclic
scheduling of tasks.

2) Static cyclic scheduling: Static cyclic scheduling
of elementary software modules, or runnables, is com-
mon because there are usually many more runnables than
the maximum number of tasks allowed by automotive
operating systems such as OSEK/VDX or AUTOSAR
OS. For this reason, runnables must be grouped together

and scheduled within a sequencer task (also called
dispatcher task). In this paper, we focus on how to
sequence large runnable sets on multicore platforms
using a static partitioning approach. Indeed, the static
task partitioning scheme is very likely to be adopted at
least in a first step because it is conceptually simple and
provides a better predictability for the ECU designers by
comparison with a global scheduling approach. We aim
to develop practical algorithms, whose performances can
be guaranteed, to build the dispatcher tasks on each core
and to schedule the runnables within these dispatcher
tasks so as to respect sampling constraints and, as far as
possible, uniformize the CPU load over time. This latter
objective is of course important to minimize the hard-
ware cost and to facilitate the addition of new functions,
as typically done in the incremental design process of
car manufacturers. This is achieved by desynchronizing
the runnable release dates. Precisely, the first release
date of each runnable, termed its offset, is determined
so as to spread the CPU demand uniformly over time.
The configuration algorithms developed in this paper are
closely related to [10] (mono-processor scheduling of
tasks with offsets) and [11] (scheduling of frames with
offsets) but it is applied to multi-core and goes beyond
as we provide lower-bounds on the performances. As
the problem is of practical interest in the industry, there
are in-house tools at the car manufacturers as well as
commercial tools, such as RealTime-at-Work’s RTaW-
ECU [12], that have been developed for configuring the
scheduling. However, the proprietary algorithms used in
these tools can usually not be disclosed and they are
sometimes specialized for some specific usage.

B. Model description

In this study, we consider a large set of n periodic
elementary software modules, also called runnables, that
are to be allocated on an ECU consisting in m identical
cores. In practice, a runnable can be implemented as a
function called, whenever appropriate, within the body
of an OS task.

1) Runnable characteristics: The ith runnable is de-
noted by Ri = (Ci, Ti, Oi, {R}, Pi). Quantities Ci,
Ti and Oi correspond respectively to the Worst-Case
Execution Time (WCET), the period (i.e., the exact time
between two successive releases) and the offset of the
Ri. As shown in Figure 1, the offset of a runnable is
the release date of the first instance of that runnable,
subsequent instances are then released periodically. The
choice made for the offset values has a direct influence
on the repartition of the workload over time.

A set of inter-runnable dependencies is denoted by
{R}. Indeed, due to specific design requirements, such



Oi0 Oi+Ti Oi+2.Ti

Oi Ti Ci

Figure 1. Model of the runnables. After its release, an instance of a
runnable has to be executed before the next instance is released (i.e.,
the deadline is set to the period).

as shared variables, some runnables may have to be
allocated on the same core and the set {R} is used
to capture those constraints. In addition, some specific
features, as I/O ports being located on a given core, may
require a runnable to be allocated onto a specific core.
This locality constraint is expressed by Pi.

2) Dispatcher task: Runnables are scheduled on their
designated core using a dispatcher task, or “sequencer
task”, that stores the runnable activation times in a table
and releases them at the right points in time. A dispatcher
task is characterized by the duration of the dispatch table
Tcycle that is executed in a cyclic manner, and by a
quantum Ttic which is the duration of a slot in the table.
Typically, one may have for instance Tcycle = 1000ms
and Ttic = 5ms. It should be noted that Tcycle must be
a multiple of the greatest common divisor (gcd) of the
runnable periods and the least common multiple (lcm) of
these periods must be a multiple of Ttic. As a result, a
dispatch table holds Tcycle/Ttic slots.

3) Assumptions: In this paper, we place a set of
working assumptions, which, in our experience, can most
often be met in today’s automotive applications:
• Each runnable is executed strictly periodically. As a

result, the whole trajectory of the system is defined
by the first activation times of the runnables (i.e.,
their offsets).

• The runnables are assumed to be offset-free, in the
sense that the initial offset of a runnable can be
freely chosen in the limit of its period (see [10]).
Those offsets will be assigned during the construc-
tion of the dispatch table with the objective to
uniformize the CPU load over a scheduling cycle.

• The worst case execution times of the runnables
are assumed to be small compared to Ttic. Typical
values for the case we consider would be 5ms for
Ttic and Ci ≤ 300µs.

• All cores are identical regarding their processing
speed.

• There are no dependencies between runnables al-
located on different cores. Therefore, all cores can
be scheduled independently. This assumption is in
line with the choices made by AUTOSAR regarding
multicore architecture [13].

This last assumption allows to divide the overall problem
into two independent sub-problems. A first part of the
problem consists in allocating all of the n runnables onto
the m cores with respect to their constraints with the aim
of balancing the CPU load of the m resulting partitions
(see §III-A). The second part of the problem consists in
building the dispatch table for each core (see §III-B).

4) Schedulability condition: Assuming that we only
consider runnable scheduling, the system is schedulable,
and thus can be safely deployed, if and only if on each
core:

1) The runnables are executed strictly periodically.
2) The initial offset of each runnable is smaller than

its period.
3) The sum of the WCET of the runnables allocated

in each slot does not exceed a given threshold,
which is typically chosen as the duration of the
slot, i.e. Ttic.

III. RUNNABLE SEQUENCING ALGORITHMS FOR

MULTICORE ECUS

In this section we present algorithms, and when pos-
sible derive lower bounds on their efficiency, to schedule
large numbers of runnables on multicore ECUs.

Since automotive OSs can only handle a limited
amount of OS-tasks, the sequencing of runnables has
to be done within dispatcher tasks. A first step of
the approach is to partition the runnable sets onto the
different cores. The next and last step is to determine
the offsets between the runnables allocated on each core
so as to balance the load over time.

A. Building tasks as a bin-packing problem

It is assumed that the number of cores is fixed.
We first distribute all the runnables on the cores. As-
signing n tasks to m cores is like subdividing a set
of n elements into m non-empty subsets. By defi-
nition, the number of possibilities for this problem
is given by the Stirling number of the second kind
(see [14]): 1

m!

∑m
i=0(−1)(m−i) (mi ) in. Considering that

the runnables may have core allocation constraints, the
cores should be distinguished. Thus, the m! combina-
tions of cores must be considered. As a result, one
has at most

∑m
i=0(−1)(m−i) (mi ) in different possibilities

for the partitioning problem alone. Such a complexity
prevents us from an exhaustive search. For instance, with
n = 30 and m = 2, the search space holds more than
one billion possibilities.

Considering this complexity, to balance as evenly as
possible the utilization of processor cores, we propose a
heuristic based on the bin-packing decreasing worst-fit



scheme for a fixed number of bins (where “bins” here are
processor cores). The heuristic is given in Algorithm 1.

Algorithm 1 Partitioning of the runnable set.
input: runnable set {Ri}, number of cores m
(1) Group inter-dependent runnables into runnable clus-
ters. Independent runnables become clusters of size 1.
(2) Allocate the runnable clusters which have a locality
constraint to the corresponding cores.
(3) Sort the runnables clusters by decreasing order of
CPU utilization rate ρ =

∑
i
Ci

Ti
.

(4) Iterate over the sorted clusters
(a) Find the least loaded core,
(b) Assign the current cluster to this core.

Step (1) runs in O(n). Step (2) runs in O(n) but all the
runnables allocated in (2) will not have to go through the
steps (3) and (4) that are algorithmically more complex.
Step (3) runs in O(n · log n). Finally step (4) runs in
O(n ·m). As a conclusion, algorithm 1 runs in O(n(m+
log n)) which does not raise any issue in practical cases.

It is worth pointing out that m ≥
⌈∑m

i=1
Ci

Ti

⌉
is a

necessary schedulability condition which can be used to
rule out configurations with too few processor cores.

B. Strategies for sequencing runnables

The next stage consists in building the dispatch table
for the set of runnables. In a first step, it is assumed
that there are no precedence constraints between the
runnables and that a single sequencer table is needed
per core. This latter assumption can be easily relaxed as
done in section V.

1) Least-loaded algorithm: Considering a runnable
Ri of period Ti, there are Ti

Ttic
possibilities for allocating

this runnable (see schedulability condition #2 in §II-B4).
As a result there are

∏n
i=1

Ti

Ttic
alternative schedules for

the n runnables and, given the cost function, we are
not aware of any ways to find the optimal solution
with an algorithm that does not have an exponential
complexity. Considering a realistic case of 50 runnables
having their period as least twice as large as Ttic, it
would be needed to evaluate a minimum of 250 possible
solutions. Once again, given the complexity, we have
to resort to a heuristic. Here, we adapt to the problem
of sequencing runnables the “Least-loaded” algorithm
proposed by Grenier et al. in [11] for the frame offset
allocation on a CAN network.

The intuition behind the heuristic is simple: at each
step, we assign the next runnable to the least loaded slot,
as described in Algorithm 2. The load of a slot is the
sum of the Ci of the runnables {Ri} already assigned to

this slot. This algorithm is further referred to as “Least
loaded” or LL for short.

Algorithm 2 Assigning runnables to slots: the “Least-
loaded” heuristic.
input: runnable set {Ri}, Ttic, Tcycle
(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) For i = 1 . . . n

(a) Look for the least loaded slot in the Ti

Ttic
first slots,

(b) Allocate Ri in every Ti

Ttic
slot starting from this

slot.

Step (1) runs in O(n · log n). Step (2) iterates n times
over steps (2a) and (2b) which run respectively in Ti

Ttic
≤

Tcycle

Ttic
and Tcycle

Ti
≤ Tcycle

Ttic
. As a result, this algorithm

runs in O(n(log n+ maxi{Ti}
Ttic

+ Tcycle

mini{Ti}) ≤ O(n(log n+
2Tcycle

Ttic
).

For practical applications, ties at step (1) are broken
using highest WCET first and ties at step (2a) by
choosing the central slot of the longest sequence of
consecutive slots having the minimum load. Although
the latter rule for breaking ties does not have any impact
on the theoretical results that will be derived next, it
helps to separate load peaks, which is important from
the ECU designer point of view. As an illustration,
applying the least-loaded heuristic to the set of runnables
Ri(Ti, Ci): R1(10, 2), R2(10, 1), R3(20, 4), R4(20, 2)
leads to the dispatch table shown in Figure 2. The
resulting distribution of the load is shown in Table I.

R1 R1 R1 R1
R

2

R

2

R

2

R

2
R3 R3R4 R4

0 5 10 15 20 25 30 35 40

Figure 2. Example of dispatch table.

Slot 1 2 3 4 5 6 7 8
Load 2 4 2 3 2 4 2 3

Table I
LOAD REPARTITION CORRESPONDING TO THE DISPATCH TABLE IN

FIGURE 2.

We consider two main metrics to evaluate the quality
of a dispatch table. The first important criterion is to
have the lowest maximum load in the cycle since this
will determine the feasibility of the schedule and the
possibility to add further functions later in the lifetime
of the system. The maximum load over all slots is also
referred to as the peak load. In a second step, a more
fine-grained assessment of the uniformity of the load



balancing can be given by the standard deviation of the
load distribution over all the slots.

2) Upper bound on the peak load: Here we derive
an upper bound on the peak load which holds for
runnable sets with harmonic periods (i.e., each period is
multiple of all smaller periods). From it, we consequently
derive a closed-form sufficient schedulability condition.
In this perspective, we first point out that the slots in
which a runnable Ri will be periodically assigned are
of equal load -which is the rationale behind step (2a) of
algorithm 2.

Lemma 1. Before the allocation of a runnable Ri,
the slot allocation induced by the previously allocated
runnables repeats with a period Ti

Ttic
.

Proof: This is proved by induction. The property
holds for R0 as all slots are empty. Assuming that the
property holds for Ri, this runnable will be periodically
allocated in every Ti

Ttic
slots. Therefore, the slot allocation

will still repeat with a period Ti

Ttic
after its allocation

in the least loaded slot. Since runnables are sorted by
increasing periods and that their periods are harmonic,
Ti+1 = k · Ti with k ∈ N∗ and the slot allocation also
repeats with a period k · Ti

Ttic
= Ti+1

Ttic
before the allocation

of Ri+1.
Therefore, the least loaded slot in the first Ti

Ttic
slots

is the least loaded over the whole dispatch table and
one does not need to look farther. As a second step, we
show that the highest load in the slot where a runnable
is going to be allocated arises when the load is equal in
every slot.

Lemma 2. The maximum load in the least loaded slot is
obtained for a perfect load balancing, which corresponds
to a constant load throughout the cycle.

Proof: Reasoning with a constant allocated load,
anything else than a perfect load balancing will result
in a load below the average load per slot in some slot
which will be eventually chosen to allocate the runnable
under consideration.

As a result, the highest peak a runnable can create
happens in the case of a perfect load balancing. Now,
let us define ρk =

∑
i∈{R}k

Ci

Ti
the total utilization of

core k where {R}k is the set of runnables allocated to
core k and card{R}k the cardinality of {R}k.

Theorem 3. On processor k, an upper bound on the
peak load of a slot allocation is

PLk = max
i∈{R}k

{Ci + ρkTtic −
card{R}k∑

j=i

Cj
Tj
Ttic} (1)

Proof: In the case of a perfect load balancing, before
the allocation of Ri, the load of a slot is given by:∑

allocated runnableswcet ·
number of allocation slots
total number of slots , i.e.

i−1∑
j∈{R}k

Cj ·
Tcycle
Tj
· Ttic
Tcycle

(2)

After the allocation of Ri, the load in the
corresponding slot is

Ci +

i−1∑
j∈{R}k

Cj ·
Ttic
Tj

(3)

Moreover:
∑i−1

j∈{R}k
Cj

Tj
= ρk −

∑card{R}k
j=i

Cj

Tj

Consequently, the worst-case peak load on processor
core k resulting of the allocation of Ri in a slot is

PLik = Ci + ρkTtic −
card{R}k∑

j=i

Cj
Tj
Ttic (4)

Taking the max for all the runnables gives equation 1.

If the worst case peak load is below Ttic for all
runnables, then the solution given by the algorithm is
schedulable. Hence the following corollary:

Corollary 1. From theorem 1, we derive the following
sufficient schedulability condition:

ρk ≤ 1 +
Cmin
Tmax

− Cmax
Ttic

(5)

with Cmax = maxi∈{R}k{Ci}, Tmax = maxi∈{R}k{Ti}
and Tmin = mini∈{R}k{Ti}

Proof: ∀i, Ci ≤ Cmax and ∀i,
∑card{R}k

j=i
Cj

Tj
≥

Cmin

Tmax
gives :

∀i, PLik ≤ Cmax + ρkTtic −
Cmin
Tmax

Ttic (6)

The scheduling condition 3 in §II-B4 (i.e., PLik ≤
Ttic) leads to the result.

This bound is achievable for n · k identical runnables
with period equal to k · Ttic and load equal to C and a
last runnable Rn·k+1 of period Tmax and load C. With
this setup, Cmin = Cmax = C and the allocation of
n · k first runnable results in a perfect load balancing
of constant load ρk · Ttic − C · Ttic/Tmax. As a result,
allocating the last runnables induces the load ρk · Ttic −
Cmin · Ttic/Tmax + Cmax in some slots.



3) Lower bound on the allocatable load: We intro-
duce here a lower bound on the capacity of the core
algorithm 2 guarantees to be able to use given a har-
monic runnable set. This is referred to as the harmonic
schedulability bound.

Theorem 4. The harmonic schedulability bound is equal
to (1− Cmax

Ttic
) of the capacity of each core.

Proof: Reasoning as done for Corollary 1, the
worst case peak load is given by allocating a runnable
R = (Cmax, Tmax = Ttic) in a slot allocation with a
perfect balance load. In the worst case, the system is
still schedulable when this average slot load is equal to
Ttic − Cmax. In other words, when the system becomes
no longer schedulable, every slot has an allocated load
greater or equal to Ttic − Cmax. As a consequence, at
least (1 − Cmax

Ttic
) of the capacity of the considered core

can been used by our algorithm.
For example, with Ttic = 5ms and Cmax = 300µs,

at least 94% of the CPU is guaranteed to be usable. In
practice, when Cmax is small, this bound is very useful.
Considering the problem of scheduling a given harmonic
runnable set on a multicore ECU with an infinite number
of cores using as few cores as possible, the following
corollary gives a bound of the maximum number re-
quired by this algorithm.

Corollary 2. Defining P =
∑

i
Ci

Ti
the total load to

allocate for a runnable set with harmonic periods and
mmin the number of core required by the “Least-loaded”
algorithm to schedule it, theorem 2 gives

mmin ≤
⌈

P

1− Cmax/Ttic

⌉
(7)

4) Dealing with non harmonic runnable sets: Usually,
in practice, runnable sets do not have strictly harmonic
periods. As a consequence, lemma 1 and lemma 2 do not
hold anymore and equations 1 and 5 cannot be applied
to provide bounds. In particular, placing a runnable in
the least loaded slot of the dispatch table could induce
peaks because of the runnable periodicity. Take the fol-
lowing runnable set for instance: R1(10, 2), R2(20, 3),
R3(20, 1), R4(50, 2) with Ttic = 5 and Tcycle = 100.
Figure 3 shows the dispatch table before the allocation
of R4. The resulting distribution of the load is shown in
Table II.

0 10 20 30 40 50 60 70 80 90 100

R2R1R3 R1 R2R1R3 R1 R2R1R3 R1 R2R1R3 R1 R2R1R3 R1

Figure 3. Dispatch table before the insertion of R4.

Slot 1 2 3 4 5 6 7 8 9 10 11 12 ...
Load 1 2 4 2 1 2 4 2 1 2 4 2 ...

Table II
LOAD REPARTITION CORRESPONDING TO THE DISPATCH TABLE IN

FIGURE 3.

At that point, choosing one of the least loaded slots in
the dispatch table with make the schedule fail because
R4 will also have to be allocated in a slot with the
highest load because of its periodicity. For example, if
the first instance of R4 is allocated in slot 1, the next
instance will be placed in slot 11 and make the system
unschedulable. However, allocating R4 in any even slot
is safe.

In order to deal with non-harmonic runnable sets, we
need to go through a larger window of slots for the
choice of the offsets. In the following, variable Twindow
is equal to the lcm of the periods of the runnables already
scheduled at the current state of the algorithm. Instead
of looking for the least loaded slot in the first Ti/Ttic
slots, we try to create the lowest peak over Twindow,
knowing that the schedule repeats in cycle afterwards.
This algorithm is further referred to as “Lowest peak”
or LP for short.

Algorithm 3 “Lowest peak” heuristic.
input: runnable set {Ri}, Ttic, Tcycle
(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) Twindow = Ttic.
(3) For i = 1 . . . n

(a) Twindow = lcm(Twindow, Ti),
(b) In the first Ti

Ttic
slots, look for the slot such that

the highest load in the slots where Ri is periodically
allocated in the Twindow

Ttic
first slots is the lowest,

(c) Allocate Ri in every Ti

Ttic
slot starting from this

slot.

Step (1) of algorithm 3 runs in O(n · log n). Step (3a)
runs in O(log Tcycle). Step (3b) and (3c) respectively
run in O(nTwindow

Ttic
) ≤ O(nTcycle

Ttic
) and O(nTcycle

Ti
) ≤

O(nTcycle

Ttic
). As a result, the whole algorithm runs in

O(n(log n+ 2Tcycle

Ti
+ log Tcycle)).

5) Improvement: placing outliers first: The algo-
rithms described in sections III-A and III-B construct
the sequencing of runnables with arbitrary periods and
possibly with locality and inter-runnable constraints.
Experiments show that these algorithms sometimes do
not always perform well with runnable sets where a few
runnables with a low frequency have a very large WCET
compared to the other runnables.



In practice, runnables with a large WCET tend to have
a large period. As a result, runnables with large WCET
are usually processed late in the runnable allocation
process which explains the load peaks. In order to reduce
those peaks, the scheduling algorithm is improved by
processing some runnables with a large WCET first1.

We define the WCET threshold Ccritic = µ + k · σ
with µ and σ denoting respectively the average and the
standard deviation of the distribution of {Ci} and k an
integer value. The runnables with Ci larger than Ccritic
are allocated first. Then, the rest of the runnables are
processed as done in algorithm 3. This new version of
the load-balancing algorithm is referred to as Lowest
Peak k-sigma, or LPkσ for short.

IV. EXPERIMENTATIONS

Here we evaluate the ability of the algorithms to
uniformize the CPU load over time and to keep on
providing feasible solutions at very high load level. For
this purpose, the algorithms LL, LP, and LPkσ, described
respectively in §III-B1, §III-B4 and §III-B5, have been
implemented in the freely available software RTaW-
ECU [12].

A. Balancing performance

We applied the algorithms to sets of runnables that are
realistic in the sense that their characteristics (i.e., period,
WCET) are drawn at random from distributions derived
from an existing PSA body gateway ECU with about
200 runnables whose periods are close to harmonic (only
about 5% of the runnables have non-harmonic periods).

In the experiments of the paper, the duration of the
slot, Ttic, is set to 5ms, the largest WCET is 30x
the smallest and the periods are non-harmonic chosen
in {10, 20, 25, 40, 50, 100, 200, 250, 500, 1000ms}. Ran-
dom dependencies between runnables are also introduced
through the following parameters:
• Interdependency ratio, that is the percentage of

runnables that are dependent and thus must be
executed on the same core, chosen equal to 30%.

• Maximum size of the clusters of dependent
runnables is equal to 4.

• Core locality constraint ratio: percentage of
runnables that are pre-allocated to a given core,
chosen equal to 30%.

The following additional parameters are used for this
experimentation Cmax = 300µs, Ttic = 5ms, Tcycle =
1s and there are over 4000 runnables to schedule on 3

1Allocating the runnables by decreasing order of WCET proves
not to be an efficient approach in our experiments.

cores inducing an average load of 95% of the capacity
of the ECU. The parameters have been set so that the
problem is challenging as we are above the harmonic
schedulability bound which would be here 94%.

The distribution of the load obtained with the Lowest
Peak and Lowest Peak 1-sigma (LP1σ) algorithms are
shown in figure 4. In the two sub-graphics, the X axis
is the time-line and the Y axis is the load of the slots
in percentage. The left-hand graphic shows that LP fails
to provide a feasible schedule since the load is slightly
above 100% in some slots (e.g., slots 29, 30 of core 1).
The few load peaks (corresponding to around 5 % of
the core capacity) are due to runnables having a large
WCET with a large period, and thus having been placed
late in the allocation process. On the other hand, LP1σ

is able to successfully schedule the runnable sets on the
three cores with a well balanced distribution of load. In
addition, around 5% of the capacity of each core remains
available most of the time, which means that some more
runnables can be added in future evolutions of the ECU.

B. Schedulability performances and robustness on auto-
motive ECUs

The goal is to assess the extent to which the schedula-
bility bound, even if it has been derived in the harmonic
case, can provide guidelines for the non-harmonic case.
Precisely, we measure the success rate of the algorithms
in the non-harmonic case at load levels such that feasibil-
ity would be ensured in the harmonic case. In the existing
body gateway ECU, the set of task periods is close to
be harmonic since withdrawing only a few runnables
ensures the harmonic property. To test the algorithms
in a more difficult context, we build a “hard” non-
harmonic case with more departure from the harmonic
property. Precisely the periods are now chosen in the set
{10, 20, 25, 40, 50, 100, 125, 200, 125, 500, 1000ms}.

max WCET (µs) 150 300 900
Schedulability bound
in the harmonic case 97% 94% 82%

Success % of LL in the
“hard” non-harmonic case 96% 96% 92%

Success % of LP in the
“hard” non-harmonic case 100% 100% 100%

Table III
PERFORMANCES OF THE SCHEDULING ALGORITHMS IN THE

NON-HARMONIC CASE WHEN THE LOAD IS CLOSE TO THE
HARMONIC SCHEDULABILITY BOUND. STATISTICS COLLECTED
ON 1000 RANDOM CONFIGURATIONS FOR EACH MAX. WCET

VALUE. THE SCHEDULABILITY BOUND IS DERIVED FROM
THEOREM 2.

As can be seen in Table III, when the load is close to
the harmonic schedulability bound the algorithms remain



Figure 4. Distribution of the load percentage over time. The left-hand graphic shows the result of the “Lowest Peak” algorithm while
right-hand graphic shows the result of the “Lowest Peak 1-sigma” algorithm. Only the first 30 slots are shown in the graphics but they are
representative of the whole 200 slots of the sequencer tasks. The algorithms of this study have been implemented as plugins of RealTime-
at-Work’s RTaW-ECU [12] software.

efficient, in particular the LP which was able to success-
fully schedule the 1000 random configurations of the
test. This suggests to us that the harmonic schedulability
bound is a good dimensioning criterion also in the non-
harmonic case.

Table IV presents the results obtained at higher loads,
i.e. above the harmonic schedulability bound. Precisely
sets of runnables with max. WCET equal to 300µs
and 900µs and CPU loads equal to 95% and 97% are
scheduled with LL, LP and LP1σ.

CPU load 95% 97% 95% 97%
Schedulability bound
in the harmonic case

94%
WCET=300µs

82%
WCET=900µs

Success % of LL 64% 18% 12% 1%
Success % of LP 94% 94% 30% 5%

Success % of LP1σ 100% 100% 97% 76%

Table IV
PERFORMANCES OF THE SCHEDULING ALGORITHMS IN THE

NON-HARMONIC CASE WHEN THE LOAD IS GREATER THAN THE
HARMONIC SCHEDULABILITY BOUND. STATISTICS COLLECTED
ON 1000 RANDOM CONFIGURATIONS FOR EACH MAX. WCET

VALUE.

As it was expected, the lower the schedulability bound,
the harder it is to schedule the runnables (compare
for instance the 97% columns). The second lesson is
that LP1σ clearly outperforms all the other contenders
especially when the WCETs are large.

V. COMBINING RUNNABLE SEQUENCING WITH TASK

SCHEDULING

In this section, we address the global scheduling at the
OS-level in an approach combining sequencer tasks with
other OS tasks. We assume that the different tasks are

scheduled by a fixed priority preemptive scheduler as it
is the case in AUTOSAR ECUs. In the next subsections,
two cases are distinguished: synchronized tasks and non
synchronized tasks. In the first case, the initial offsets
between tasks are known and the tasks are scheduled
using a single clock. In the second case, the different
sequencer tasks may be driven by different clocks. This
latter case arises, for instance, in engine controllers in
which some runnables are driven by the microcontroller
clock while others are driven on the basis of the engine
RPM which varies over time. For each case, we discuss
how to build the slot allocation of the sequencer tasks
so as to maximize the schedulability of the task set,
before addressing how to verify the schedulability of the
resulting solution.

A. Problem description

In this section, the focus is set at the core level and
the assumption that only one sequencer task is scheduled
on each core is relaxed. Now, it is assumed that one
can have several sequencer tasks on a same core. This
case arises when memory protection across runnables
is needed. Indeed, memory protection, such as provided
by AUTOSAR OS, cannot be ensured at the runnable
level but at the task (or ISR and OS-application) level.
Then, we are given now an extra set of periodic tasks that
needs to be scheduled on the same core and described as
usual by Ti = (Ci, Ti, Di, Ji). Quantities Ci, Ti, Di and
Ji correspond respectively to the Worst-Case Execution
Time (WCET), the period, the relative deadline and the
release jitter of the task Ti .

In the context of this problem, the runnables have
already been allocated onto a set of sequencer tasks Sj ,
described such as in II-B2, according to their source and



memory protection requirement but the slot allocation
remains to be done. The schedulability condition 3
of II-B4 is also relaxed: it is too stringent for the case
where one has multiple sequencer tasks per core since
higher priority tasks may preempt the sequencer tasks
during a whole slot duration. As of now, we only require
runnables to have a single instance active at each point
in time, which corresponds to the classical case where
deadlines are equal to periods. Finally, though it can
be handled in our framework, it is assumed that the
release jitter of a sequencer task is negligible because
its activations are usually driven by a high priority OS
service. Given these hypotheses, the problem is to find a
strategy to build the slot allocation of all the sequencer
tasks in order to increase the schedulability of the system
consisting in a task set and some runnable sets that are
scheduled on the same core.

B. Synchronized tasks

Synchronized means here that the initial offsets of
the different tasks are known and that all the tasks are
scheduled using the same time basis. As a consequence,
the tasks’ phasings are known and can be used when
building the slot allocation of the sequencer tasks. As
in the case where one has a single sequencer, this latter
problem cannot be solved optimally (see §III-B1) and a
heuristic approach is required.

We propose a similar approach as done for the LP
algorithm but here one has to take into account the
interferences of higher priority tasks. When placing a
runnable, we look for the slot that minimizes the highest
response time of the runnable, throughout all the slots
where it is allocated (until the schedule repeats itself).
For that purpose, each slot is transformed in a task that
captures the execution requirements of all the runnables
allocated in the slot.

The response time needs to be calculated for each slot
in the hyperperiod of the task set (possibly longer than
Tcycle of the sequencer task). This can be done using
the response time analysis for static priority tasks with
offsets and jitters introduced in [15] and applying it
for each slot to whom the runnable belongs. Integrat-
ing sequencer tasks into Redell’s approach is done by
transforming the slot allocations into a task set. Each of
the slots is translated into a single task with the proper
offset and a period equal to Tcycle. This does not further
complexify Redell’s analysis since the number of task
instances remains the same.

Though this approach is extremely computation inten-

sive2, usual automotive applications lead to small hyper-
periods since the task sets have almost harmonic periods.
Furthermore the schedulability analysis is conducted at
the same time as the sequencer tasks are built.

C. Non synchronized tasks

The previous approach cannot be applied to non
synchronized tasks since their offset and time basis
are not known. If the tasks are scheduled on different
and varying time bases (e.g, CPU clock and engine
RPM), whatever the way a sequencer task is constructed,
every higher priority task can interfere with any of
the sequencer task’s slot, as all offset configurations
between them are possible at run-time. This means that,
on the contrary to the synchronized case of §V-B, we
cannot take advantage of the characteristics of the higher
priority tasks when building the slot allocation of a
sequencer task. The maximum robustness against all pos-
sible asynchronisms between sequencer tasks is achieved
by balancing the load of each of the tasks individually,
as done in the basic use-case of the algorithms of §III-B.

Because of the possibly varying time bases, the
schedulability of the slot allocation cannot be checked
as in the previous cases. However, if it is possible to
bound the clock speed of each sequencer task, the multi-
frame task model (i.e., periodic activations but varying
execution times between instances [16]) can be used to
check the feasibility of the schedule. The transformation
of a sequencer task into a multi-frame task is loseless :
the slots of a sequencer task become the task instances
with their execution times depending on the runnables
actually scheduled in each slot. Then, assuming the
maximum clock speeds, which lead to the worst-case
workload arrival, a multiframe schedulability test can be
applied, for instance [17], [18] or [19] which integrates
release jitters in the schedulability analysis.

VI. CONCLUSION

Multi-source software and multicore ECUs will dras-
tically change the electrical/electronic architectures and
should enable more cost-effective and more flexible
automotive embedded systems. In our view, the OS
protection mechanisms specified by AUTOSAR provide
a sound basis to develop appropriate safety mechanisms
and policies, despite the growing complexity and crit-
icality of software functions. However, today’s design
methodologies need to be adapted to this new context
and there is a wide range of technical problems to

2The problem of computing response times with offsets in the
synchronized case is conjectured to be NP-hard, though, to the best
of our knowledge, there is no proof in the literature.



be solved. Among these issues are the design of the
software architectures and the scheduling of the software
components, which have been considered in this paper.

The set of runnable sequencing algorithms proposed
in this paper aims at uniformizing the load over time,
and thus increase the maximum workload schedulable
on the CPU. The algorithms also provide guaranteed
performance levels in some specific contexts. Experi-
mentations on realistic case-studies have confirmed the
algorithms to be versatile and efficient in terms of CPU
usage optimization.

We have presented practical solutions to schedule
activities according to both the static cyclic and priority-
driven paradigms, as it is becoming a need in automotive
multicore ECUs and other complex embedded systems
with dependability requirements such as are required in
the aerospace domain. Our ongoing work is to extend
this study to handle the constraints originating from the
communication between runnables located on distinct
ECUs. This first requires the precise modeling of the
data exchanges and capture their timing constraints, for
instance using the TIMMO-2-USE methodology [20],
then to extend the scheduling algorithms.

REFERENCES

[1] A. Emadi, Y. Lee, and K. Rajashekara, “Power electronics and
motor drives in electric, hybrid electric, and plug-in hybrid
electric vehicles,” IEEE Trans. on Ind. Electronics, vol. 55,
no. 6, pp. 2237–2245, june 2008.

[2] F. Mapelli, D. Tarsitano, and M. Mauri, “Plug-in hybrid electric
vehicle: Modeling, prototype realization, and inverter losses re-
duction analysis,” IEEE Trans.on Industrial Electronics, vol. 57,
no. 2, pp. 598 –607, feb 2010.

[3] D.-J. Kim, K.-H. Park, and Z. Bien, “Hierarchical longitudinal
controller for rear-end collision avoidance,” IEEE Trans. on
Industrial Electronics, vol. 54, no. 2, pp. 805 –817, april 2007.

[4] T. Bucher, C. Curio, J. Edelbrunner, C. Igel, D. Kastrup,
I. Leefken, G. Lorenz, A. Steinhage, and W. von Seelen, “Image
processing and behavior planning for intelligent vehicles,” IEEE
Trans. on Industrial Electronics, vol. 50, no. 1, pp. 62 – 75, feb
2003.

[5] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion, “Multi-
source and multicore automotive ECUs - OS protection mech-
anisms and scheduling,” in IEEE International Symposium on
Industrial Electronics (ISIE), 2010.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies
for assigning real-time tasks to multiprocessor systems,” IEEE
Trans. on Computers, vol. 44, no. 12, pp. 1429–1442, Dec.
1995.

[7] Y. Oh and S. Son, “Fixed-priority scheduling of periodic tasks
on multiprocessor systems,” Department of Computer Science,
University of Virginia, Tech. Rep. CS-95-16, 1995.

[8] S. Lauzac, R. Melhem, and D. Mossé, “An improved rate-
monotonic admission control and its applications,” IEEE Trans.
on Computers, vol. 52, no. 3, pp. 337–350, 2003.

[9] A. Karrenbauer and T. Rothvoss, “An Average-Case Analysis
for Rate-Monotonic Multiprocessor Real-time Scheduling,” in
17th Annual European Symposium on Algorithms (ESA), 2009.

[10] J. Goossens, “Scheduling of offset free systems,” Real-Time
Systems, vol. 24, no. 2, pp. 239–258, March 2003.

[11] M. Grenier, L. Havet, and N. Navet, “Pushing the limits of CAN
- scheduling frames with offsets provides a major performance
boost,” in European Congress of Embedded Real-Time Software
(ERTS), 2008.

[12] RealTime-at-Work, “RTaW-ECU: Static cyclic scheduling of
tasks,” Available for download at http://www.realtimeatwork.
com, 2011.

[13] AUTOSAR Consortium, “Specification of multi-core OS archi-
tecture v1.0,” AUTOSAR Release 4.0, 2009.

[14] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions. Dover Publications (ISBN 0-486-61272-4), 1970.

[15] O. Redell and M. Törngren, “Calculating exact worst case
response times for static priority scheduled tasks with offsets
and jitter,” in Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2002.

[16] A. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Trans. on Software Engineering, vol. 23, pp. 635–645,
1996.

[17] S. Baruah, D. Chen, and A. Mok, “Static-priority scheduling of
multiframe tasks,” in 11th Euromicro Conference on Real-Time
Systems, 1999, pp. 38–45.

[18] A. Zuhily and A. Burns, “Exact response time scheduling
analysis of accumulatively monotonic multiframe real time
tasks,” Real-Time Systems, vol. 43, no. 2, 2009.

[19] ——, “Exact scheduling analysis of non-accumulatively mono-
tonic multiframe tasks,” in 16th International Conference on
Real-Time and Networked Systems (RTNS), 2008.

[20] ITEA2 TIMMO-2-USE Consortium, “Mastering
timing tools, algorithms, and languages,” available at
http://www.timmo-2-use.org/overview.htm, 2011.

Aurélien Monot graduated from the engi-
neering school Ecole des Mines de Nancy in
2008, majoring in Computer Science. After
spending 6 months at the IBM research lab in
Zürich, he started an industrial Ph.D at PSA
Peugeot-Citroën co-supervised by the LORIA
in Nancy on "end-to-end timing constraints
in the AutoSar context". He is now INRIA
research engineer in the ITEA2 Timmo-2-Use

project. His main topics of interest are real-time embedded systems
and model-based design approaches.graduated from the engineering
school Ecole des Mines de Nancy in 2008, majoring in Computer
Science. After spending 6 months at the IBM research lab in
Zürich, he started an industrial Ph.D at PSA Peugeot-Citroën and
co-supervised by the LORIA in Nancy on the topic of "End-to-end
real Time constraints in the AutoSar context". He is now also involved
in the ITEA project Timmo-2-Use as a member of INRIA. His main
topic of interests are real-time embedded systems and model-based
design approaches.



Nicolas Navet is a researcher at INRIA (LO-
RIA Lab, France) since 2000 and head of the
INRIA TRIO project (Real-Time and Interop-
erability). His research interests include real-
time and embedded systems, communication
protocols, fault tolerance and dependability as-
sessment. For the last 17 years, he has worked
on numerous projects with OEMs and suppli-
ers in the automotive and avionics domains.

He is the founder of RealTime-at-Work, a company that helps system
designers build truly safe and optimized critical systems. He has a
B.S. in Computer Science from the University of Berlin (1993) and
a PhD in Computer Science from the Institut National Polytechnique
de Lorraine (1999).

Bernard Bavoux is a 1984 Supélec gradu-
ate engineer. He began his career developing
embedded microcontroller and printed circuits
boards for spatial projects at Thales (formerly
Thomson) during 5 years. Then he moved
to the aeronautic domain at TEAM, a world
leader equipment supplier. There during 9
years, he was in charge of the electronic design
office, including research and development, for

analog and digital audio intercommunication systems. Since 14 years
he has been working in the automotive industry: During 5 years at
Valeo, he managed an Electric and Electronic Architecture innovation
team and an embedded Electronic Control Units research team.
Currently at PSA Peugeot Citroën, he is leading an advanced research
team in the fields of Electricity, Electronics and Opto-electronics in
connection with the best research institutes in the world. Since 10
years, he is recognized as a senior expert in this field.

Françoise SIMONOT-LION is Professor of
Computer Science at University of Lorraine
(France). Between 1997 and 2010, she was
the scientific leader of the Real Time and In-
terOperability (TRIO) LORIA/INRIA research
team and since 2010, head of the LORIA lab-
oratory. Her research topics are modeling and
analysis of real time distributed systems. She
is involved in several research collaborations

with automotive industry and was co-chair of the subcommittee
“Automotive Electronic and Embedded Systems” of the IEEE
Industrial Electronic Society (IES) - TCFA. She coauthored more
than 100 technical papers in the area of real-time systems modeling
and analysis and is associate editor of the IEEE Transactions on
Industrial Informatics.


