
Multicore scheduling in automotive ECUs

Aurélien Monot - PSA Peugeot Citroën, LORIA
Nicolas Navet - INRIA, RealTime-at-Work
Françoise Simonot - LORIA
Bernard Bavoux - PSA Peugeot Citroën

Talk at ERTS2 2010
Toulouse, May 21st 2010

2

Outlook

Context:
New tools and methodologies are needed as multicore ECUs
are being introduced in the automotive EE architecture.

Problem:
How to address the scheduling of numerous runnables on a
multicore ECUs in the context of the automotive domain?

Method:
Deployment of load balancing algorithms in ECU configuration
tools.

The number of ECUs has more than doubled in 10 years

The case of a generic car manufacturer
3

Typical number of ECUs in a car in 2000 : 20

Typical number of ECUs in a car in 2010 : over 40

Other examples

Between 60 and 80 ECUs in the Audi A8

Over 100 ECUs in some Lexus !

4

Moving towards multicore architecture

Tas
k

ECU 1 ECU 2

Tas
k

Tas
k

Tas
k

Decreasing the complexity of in-vehicle architecture:
reduces EE design and verification efforts
decreases number of network interfaces
decreases traffic on CAN network
reduces costs

Tas
k

ECU 1 ECU 2

Tas
k

Tas
k

Tas
k

5

Moving towards multicore architecture

Other use cases for the automotive domain
Dealing with resource demanding applications
‣ engine control, image processing...

Improving the safety
‣ segragation of multi-source software, ISO26262...

Dedicated use of core
‣ monitoring, event-triggered tasks

General benefits of multi-core
reduced power consumption
reduced heat
reduced EMC

6

AutoSAR requirements

• Static partitioning
• Static cyclic scheduling using schedule tables
• BSW are all allocated on the same core

7

Problem
Goal: schedule numerous runnables on a multicore ECU

Two sub-problems
Partitioning
‣ 600 runnables on 2 cores : 2600 possible allocations

Build schedule table
‣ 300 runnables in 200 slots (expiry points) : 200300 schedules

Sub-objectives and criteria
Avoid load peaks
‣ Max

Balance load over time
‣ Standard Deviation

8

Model

0 5 10 15 20 25 30 35 40

R1 R4R
2 R3 R1 R1 R1R

2
R
2

R
2R3 R4

R1

R4

R
2

R3

Runnables
•Period
•WCET
•Initial Offset
•Core allocation constraint
•Colocation constraint

Sequencer task

Ttic Slots Tcycle

P1=10
C1=2
O1=0

P2=10
C2=1
O2=5

P3=20
C3=3
O3=5

P4=20
C4=2
O4=15

9

Solution

Partitioning is dealt with as a bin packing problem
Worst fit decreasing algorithm with fixed number of bins

Load Balancing is done with the Least Loaded algorithm (LL)
inspired from CAN domain [Grenier and Navet ERTSS2008]

Extended to handle non harmonic runnable sets (G-LL)
Improved so as to reduce further load peaks (G-LLσ)

Implemented in a tool
Freely available soon at http://www.realtimeatwork.com

10

Experiments with RTaW-ECU

11

Harmonic task sets

LL
Max: 4.79
Min: 4.52
StdDvt: 0.038

G-LLσ
Max: 4.75
Min: 4.65
StdDvt: 0.018

Generated load: 94%, Ttic=5ms, Tcycle = 1s

12

Non harmonic task sets

Generated
CPU load

95% 97% 95% 97%

Schedulability
bound in the
harmonic case

94%
Max WCET =
300μs

82%
Max WCET = 900μs

Success % of
LL

64% 18% 12% 1%

Success % of
G-LL

94% 94% 30% 5%

Success % of
G-LL1σ

100% 100% 97% 76%

Max WCET (μs) 150 300 900

Schedulability
bound in the
harmonic case

97% 94% 82%

Success % of LL 96% 96% 92%

Success % of G-LL 100% 100% 100%

1−
Cmax

Ttic
Schedulability bound in the harmonic case

Statistics collected over 1000 generated runnable sets

13

Multiple synchronized sequencer tasks per core

Incremental scheduling of three synchronized sequencer tasks with respective
load of 45%, 35% and 15% resulting in 95% of the core capacity.

Tcycle=1000ms and Ttic=5ms

14

Multiple non synchronized sequencer
tasks per core

Case arises for sequencer tasks using different tic counters
Engine control applications (standard time vs RPM)

Any offset between the sequencer tasks and all clock rates are
possible during runtime

each sequencer task needs to be balanced
independantly

Verification is possible considering maximum clock rates
Multi-frame scheduling results can be used

15

Conclusion
Adoption of multicore ECU raises new challenges

Evolution of software architecture design
Scheduling of software components

We propose runnable scheduling heuristics for ECUs
Fast and performant
Easily adaptable for more advanced applications
Compatible with AutoSAR R4.0 and its multicore
extensions

Future work
Precedence constraints
Lockstep synchronization
Distributed timing chains

16

Thank you for your attention

