

Multicore scheduling in automotive ECUs

Aurélien Monot - PSA Peugeot Citroën, LORIA Nicolas Navet - INRIA, RealTime-at-Work Françoise Simonot - LORIA Bernard Bavoux - PSA Peugeot Citroën

Talk at ERTS2 2010 Toulouse, May 21st 2010

Outlook

Context:

New tools and methodologies are needed as multicore ECUs are being introduced in the automotive EE architecture.

Problem: How to address the scheduling of numerous runnables on a multicore ECUs in the context of the automotive domain?

Method:

Deployment of load balancing algorithms in ECU configuration tools.

RTaW

ealTime-at-Wor

PSA PEUGEOT CITROE

The case of a generic car manufacturer

Typical number of ECUs in a car in 2000 : 20 Typical number of ECUs in a car in 2010 : over 40

The number of ECUs has more than doubled in 10 years

Other examples

Between 60 and 80 ECUs in the Audi A8

Over 100 ECUs in some Lexus !

Moving towards multicore architecture

Decreasing the complexity of in-vehicle architecture:
reduces EE design and verification efforts
decreases number of network interfaces
decreases traffic on CAN network
reduces costs

RET CO

Moving towards multicore architecture

Other use cases for the automotive domain

- Dealing with resource demanding applications
 - engine control, image processing...
- Improving the safety
 - segragation of multi-source software, ISO26262...

RTaW

PSA PEUGEOT CITROE

- Dedicated use of core
 - monitoring, event-triggered tasks

General benefits of multi-core

- reduced power consumption
- reduced heat
- reduced EMC

RealTime-at-Work

RTaW PSA PEUGEOT CITROËN

AutoSAR requirements

- Static partitioning
- Static cyclic scheduling using schedule tables
- BSW are all allocated on the same core

OT

Problem

Goal: schedule numerous runnables on a multicore ECU

Two sub-problems

- Partitioning
 - 600 runnables on 2 cores ^{100,0} 97.5
- Build schedule table
 - 300 runnables in 200 slot

Sub-objectives and criteria

- Avoid load peaks
 - Max
- ⇒ Balance load over time
 - Standard Deviation

Model

Sequencer task

Solution

Partitioning is dealt with as a bin packing problem ⇒Worst fit decreasing algorithm with fixed number of bins

Load Balancing is done with the Least Loaded algorithm (LL) inspired from CAN domain [Grenier and Navet ERTSS2008] ⇒Extended to handle non harmonic runnable sets (G-LL) ⇒Improved so as to reduce further load peaks (G-LLσ)

Implemented in a tool

Freely available soon at <u>http://www.realtimeatwork.com</u>

Experiments with RTaW-ECU

Loria

RealTime-at-Work

RTaW PSA PEUGEOT CITROËN

Harmonic task sets

Total Load per slot

LL Max: 4.79 Min: 4.52 StdDvt: 0.038

G-LL Max: 4.75 Min: 4.65 StdDvt: 0.018

Non harmonic task sets

Schedulability bound in the harmonic case

				Generated	95%	97%	95%	97%
Max WCET (µs)	150	300	900	CPU load				
Schedulability bound in the	97%	94%	82%	Schedulability bound in the harmonic case	94% Max W0 300µs	CET =	82% Max WCE	T = 900µs
Success % of LL	96%	96%	92%	Success % of LL	64%	18%	12%	1%
Success % of G-LL	100%	100%	100%	Success % of G-LL	94%	94%	30%	5%
				Success % of G-LL _{1σ}	100%	100%	97%	76%

Statistics collected over 1000 generated runnable sets

RTaW

<u>max</u>

 T_{tic}

PSA PEUGEOT CITROEN

Multiple synchronized sequencer tasks per core

Total load per slot

Multiple non synchronized sequencer tasks per core

Case arises for sequencer tasks using **different tic counters** Engine control applications (standard time vs RPM)

Any offset between the sequencer tasks and all clock rates are possible during runtime

RTaW

PSA PEUGEOT CITR

each sequencer task needs to be balanced independently

✓ Werification is possible considering maximum clock rates
 ✓ Multi-frame scheduling results can be used

Conclusion

Adoption of multicore ECU raises new challenges

- Evolution of software architecture design
- Scheduling of software components

We propose runnable scheduling heuristics for ECUs

- Fast and performant
- Easily adaptable for more advanced applications
- Compatible with AutoSAR R4.0 and its multicore extensions

RTaW

PSA PEUGEOT CITROE

Future work

- Precedence constraints
- Lockstep synchronization
- Distributed timing chains

Thank you for your attention

