_— -

Aurélien Monot - PSA Peugeot Citroen, LORIA
Nicolas Navet - INRIA, RealTime-at-Work
Francoise Simonot - LORIA

Bernard Bavoux - PSA Peugeot Citroén

Talk at ERTS2 2010
Toulouse, May 21st 2010

Outlook

Context:
New tools and methodologies are needed as multicore ECUs
are being introduced in the automotive EE architecture.

Problem:
How to address the scheduling of numerous runnables on a
multicore ECUs in the context of the automotive domain?

Method:

Deployment of load balancing algorithms in ECU configuration
tools.

= W jb

The case of a generic car manufacturer

Typical number of ECUs in a car in 2000 : 20
Typical number of ECUs in a car in 2010 : over 40

The number of ECUs has more than doubled in 10 years

Other examples
Between 60 and 80 ECUs in the Audi A8

Over 100 ECUs in some Lexus !

Moving towards multicore architecture

Decreasing the complexity of in-vehicle architecture:
<reduces EE design and verification efforts

<decreases number of network interfaces

<decreases traffic on CAN network

<reduces costs

Moving towards multicore architecture

Other use cases for the automotive domain
< Dealing with resource demanding applications
» engine control, image processing...
< Improving the safety
» segragation of multi-source software, 1ISO26262...
< Dedicated use of core
» monitoring, event-triggered tasks

General benefits of multi-core
< reduced power consumption
< reduced heat
< reduced EMC

Initial Expiry
Point

AutoSAR requirements

—

Static partitioning
Static cyclic scheduling using schedule tables
BSW are all allocated on the same core

— 7T

Final Expiry
Point

RTaw

Expiry Point 1 Expiry Point 2 Expiry Point 3 Expiry Point 4 Expiry Point 5
Task Activations Task Activations Task Activations Task Activations Task Activations
TaskA =<none= Taskf TaskAa TaskB
TaskB TaskE TaskE TaskF
Event Settings Event Settings Event Settings Event Settings Event Settings
EventP: TaskC EventP: TaskC <nong> EventQ:TaskC EventP:TaskC
EventP: TaskD EventP:TaskD EventQ:TaskE
Offset Offset Offset Offset Offset FinalDelay=10
4 ticks 12 ticks 20 ticks 32 ticks 40 ticks Jmaleay=
f"
Delay=8 Delay=8 Delay=12 Delay=8
Delay=Initial Offset+Final Delay=14
4 12 20 32 40
Schedule Table Duration = 50 ticks

Problem

Goal: schedule numerous runnables on a multicore ECU

Two sub-problems
< Partitioning

» 600 runnables on 2 cores """

< Build schedule table

92,5 {1

. 0,04}

» 300 runnables in 200 slof .-
85,04}

82,511

Total WCET per slot

80,04

Sub-objectives and criteria |

75,010

< Avoid load peaks

70,01

> Max ol
< Balance load over time

» Standard Deviation

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600
Slots

— Sequencer Task Core 0 — Sequencer Task Core 1

Runnables
*Period
‘WCET
|nitial Offset
*Core allocation constraint
*Colocation constraint

Sequencer task

o g o) Gl e e e ol |

0 3 10 f\ 15/ 20 25 30 35 40
Thic Slots Teyee

Solution

Partitioning is dealt with as a bin packing problem
<>Worst fit decreasing algorithm with fixed number of bins

Load Balancing is done with the Least Loaded algorithm (LL)
inspired from CAN domain [Grenier and Navet ERTSS2008]
<Extended to handle non harmonic runnable sets (G-LL)
<lmproved so as to reduce further load peaks (G-LLo)

Implemented in a tool
<Freely available soon at http://www.realtimeatwork.com

Experiments with RTaW-ECU

&5 RTaW-Ecu v2.00 (13) - ‘Model not yet saved’ (=[E] =

File Samples Generate Scheduling

Ecus
3 Ecu’
RunnableEntitiesSets
‘Generated'
FunnableEntities
ActivationConfigurations
AllocationConstraintsSets
CofocationConstraints
EcuSchedules
‘LEAST_CROWDED-5m
'LOWEST_PEAK-5ms’

Graphics
Total WCET per slot’
Total WCET per slat’
Total WCET per slot’
“Total Load per slot’

‘Generated | Total Load perslot’ T |

1,00
0,09
0,98
0,97
0,96

Total Load per slot

el = - T P e e e

0,95 [

0,04
0,93
0,92
0,01
0,90
0,89
0,88
0,87
0,95
0,85
0,84
0,83
0,82
0,81
0,80

1 100 200 300 4l:.!l.'l 500 600 F00 800 900 1 l:lll!i
Slots

I— Sequencer Task Core 0— Sequencer Task Core 1— Sequencer Task Core 1

10

11

Harmonic task sets

Total Load per slot

o LL

0,981 Max: 4.79

o Min: 4.52

oss |l StdDvt: 0.038
o G-LLo

0,30 Max: 4.75

- Min: 4.65
StdDvt: 0.018

Slots

|—Sequencer Task Core 0 — Sequencer Task Core 1 — Sequencer Task Core 2|

Generated load: 94%, T, =bms, T

tic
ﬂ?" '

cycle =1s

1!5,. i!i

RealTime-at-Waorl

12

Non harmonic task sets

. . . C
Schedulability bound in the harmonic case 1-—
Ttic
Generated 95% 97% 95% 97%
Max WCET (us) 150 300 900 CPU load
N Schedulability 94% 82%
Schedulability 97% 94% 82% poundinthe Max WCET = Max WCET = 900ps
bound in the harmonic case 300us
harmonic case
Success % of 64% 18% 12% 1%
Success % of LL 96% 96% 92% L
Success % of 94% 94% 30% 5%
Success % of G-LL 100% 100% 100% @.LL
Success % of 100% 100% 97% 76%

G-LL,,

Statistics collected over 1000 generated runnable sets

= LJ| jb

1,00

0,95 1

0,90 1

0,85 -

0,80 -

0,75 1

0,70 1

0,65 1

0,60 1

0,55 1

0,50 -

13

Multiple synchronized sequencer tasks per core

Total load per slot

0145. L

0,40 - .
0 100 200 300 400 500 600 700 800 900 1000

Slots

|— Sequencer Task Core 0 |

Incremental scheduling of three synchronized sequencer tasks with respective
load of 45%, 35% and 15% resulting in 95% of the core capacity.

T...=1000ms and T,,.=5ms

ﬂ?" '

cycle

1!“. ;ms

RealTi rn"'._-_fsr:fWor-

14

Multiple non synchronized sequencer
tasks per core

Case arises for sequencer tasks using different tic counters
< Engine control applications (standard time vs RPM)

Any offset between the sequencer tasks and all clock rates are
possible during runtime

< each sequencer task needs to be balanced
independantly

Verification is possible considering maximum clock rates
< Multi-frame scheduling results can be used

15

Conclusion

Adoption of multicore ECU raises new challenges
< Evolution of software architecture design
< Scheduling of software components

We propose runnable scheduling heuristics for ECUs
< Fast and performant
< Easily adaptable for more advanced applications

< Compatible with AutoSAR R4.0 and its multicore
extensions

Future work
< Precedence constraints
< Lockstep synchronization
< Distributed timing chains

16

Thank you for your attention

