



## Timing verification of automotive communication architecture using quantile estimation

**Nicolas NAVET** (Uni Lu), Shehnaz LOUVART (Renault), Jose VILLANUEVA (Renault), Sergio CAMPOY-MARTINEZ (Renault) and Jörn MIGGE (RealTime-at-Work).

ERTSS'2014 - Toulouse, February 5-7, 2014.

February 07, 2014



 Early-stage timing verification of wired automotive buses – CAN-based communication architectures





## 2 Automotive communication architectures

- Increased bandwidth requirements & timing constraints
- More complex & heterogeneous architectures with black-box ECUs
- Optimized CAN networks for higher bus loads: priorities, frame offsets, gateways, communication stacks, etc
- ✓ Verification activity of higher importance today, higher load levels calls for more accurate verification models
  → no margin for errors
- Main performance metrics: frame response time = communication latency



#### **Schedulability analysis** "mathematic model of the worst-case possible situation"

## VS "program that reproduces the behavior of a system"

$$K_i^k(t) \stackrel{\text{def}}{=}$$

$$\underbrace{\left[\begin{array}{c} \frac{\sigma_i^k(\phi^i)}{k} \\ \frac{v_i^k}{k} \end{array}\right]}_{i} + \underbrace{\left[\begin{array}{c} \frac{t-\varphi}{2} \\ \frac{v_i^k}{k} \\ \frac{v_i^k}{k}$$

max number of instances that can accumulate at critical instants max number of instances arriving after critical instants

 $\bigcirc$  Upper bounds on the perf. metrics  $\rightarrow$  Safe if model is correct and assumptions met

8 Often pessimistic  $\rightarrow$  overdimensioning

8 Might be a gap between models and real systems!  $\rightarrow$  unpredictably unsafe then



#### Models close to real systems

Sine grained information

Out of reach! Occasional deadline misses must be acceptable



RTaW : "enable designers to build provably safe and optimized critical systems"

- Simulation and schedulability analysis for networks and ECU CAN, CAN FD, Arinc825, Ethernet, FlexRay, AFDX, etc...
- OEM customers: Renault, PSA, Eurocopter, Astrium, ABB

 – RTaW/Sim Starter edition can be downloaded from <u>www.realtimeatwork.com</u>

 No black box software: all schedulability analysis that are implemented are published



Used in this study *RTaW-Sim* → CAN simulator with schedulability analysis and configuration algorithms



## A Metrics for the evaluation of frame latencies: the case for quantiles



#### Frame response time distribution

Upper-bound with schedulability analysis



Q1: pessimism of schedulability analysis ?! Q2: distance between simulation max. and WCRT ?!



Probability

Using quantiles means accepting a controlled risk



 ✓ No extrapolation here, won't help to say anything about what is too rare to be in simulation traces



ERTSS'2014

07/02/2014 - 11

## Identifying both deadline and tolerable risks



**Response time** 

- 1. Identify frame deadline
- 2. Decide the tolerable risk  $\rightarrow$  target quantile
- 3. Simulate "sufficiently" long
- 4. If target quantile value is below deadline, performance objective is met



## 1) Quantiles vs average time between deadline misses

| Quantile | One frame<br>every | Mean time to failure<br>Frame period = 10ms | Mean time to failure<br>Frame period = 500ms |  |
|----------|--------------------|---------------------------------------------|----------------------------------------------|--|
| Q3       | 1 000              | 10 s                                        | 8mn 20s                                      |  |
| Q4       | 10 000             | 1mn 40s                                     | ≈ 1h 23mn                                    |  |
| Q5       | 100 000            | ≈ 17mn                                      | ≈ 13h 53mn                                   |  |
| Q6       | 1000 000           | ≈ 2h 46mn                                   | ≈ 5d 19h                                     |  |
|          |                    |                                             |                                              |  |

Warning : successive failures in some cases might be temporally correlated, this must be assessed! Use of distributions of successive quantile overshoots, linear and non-linear dependency analysis



## 2) Determine the minimum simulation length

✓ time needed for quantile convergence ✓ reasonable # of values: a few tens ....

|                                                     |                               | Min                  | Average   | Q2       | Q3       | Q4       | Q5                                           | Q6                                           | Max                                                      | Bound                                        |           |
|-----------------------------------------------------|-------------------------------|----------------------|-----------|----------|----------|----------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------|
|                                                     |                               | 0,236 ms             | 0,272 ms  | 0,466 ms | 0,474 ms | 0,477 ms | 0,477 ms                                     | 0,477 ms                                     | 7,477 ms                                                 | 0,550 ms                                     |           |
|                                                     | -                             |                      |           |          |          | ns       | 0,719 ms                                     | 0,719 ms                                     | 0 719 ms                                                 | 0,830 ms                                     |           |
| Tool support can help here: 🔤                       |                               |                      |           |          |          |          |                                              | 0,925 ms                                     | 0,925 ms                                                 | 1,074 ms                                     |           |
|                                                     |                               |                      |           |          |          |          |                                              | 1,167 ms                                     | 1, 67 ms                                                 | 1,354 ms                                     |           |
|                                                     |                               | o a numbers in aray  |           |          |          |          |                                              |                                              | 0,943 ms                                                 | 1,092 ms                                     |           |
|                                                     | E                             | e.g. numbers in gray |           |          |          |          |                                              | 1,185 ms                                     | 1,135 ms                                                 | 1,372 ms                                     |           |
|                                                     |                               | · · · ·              |           |          |          | ns       | 1,414 m s                                    | 1,427 ms                                     | 1,4.7 ms                                                 | 1,652 ms                                     |           |
|                                                     | S S                           | hould                | not t     | be tru   | isted    | ns       | 1,669 n s                                    | 1,669 ms                                     | 1,669 ms                                                 | 1,932 ms                                     |           |
|                                                     |                               |                      |           |          |          | ns       | 1,328 ns                                     | 1,339 ms                                     | 1,339 ms                                                 | 1,564 ms                                     |           |
|                                                     |                               | 0,210 ms             | 0,212,003 | 1.061.mg | 1,002 ms | 1,750 mg | 1,791115                                     | 1,811 ms                                     | 1,822 ms                                                 | 2,124 ms                                     |           |
|                                                     |                               | 0,210 ms             | 0,515 ms  | 1,001 ms | 1,401 ms | 1,750 ms | 2,075115                                     | 2,009 ms                                     | 2,030 ms                                                 | 2,300 ms                                     |           |
|                                                     |                               | 0,322 ms             | 0,000 ms  | 1,750 ms | 1,057 ms | 2,110 ms | 2,207115                                     | 2,300 ms                                     | 2,507 ms                                                 | 4,818 ms                                     |           |
|                                                     |                               | 0,430 ms             | 0,013 ms  | 1,330 ms | 2 128 ms | 2,104 ms | 2,23315                                      | 2,486 ms                                     | 2,672 ms                                                 | 2 946 ms                                     |           |
|                                                     |                               | 0,720 ms             | 0,525113  | 1,002 m3 | 2,120 ms | 2,200 m3 | 2,573 ns                                     | 2,710 ms                                     | 2,716 ms                                                 | 3,470 ms                                     |           |
|                                                     |                               |                      |           |          |          |          | 2,618 ms                                     | 2.710 ms                                     | 2.8 3 ms                                                 | 3.750 ms                                     | F         |
|                                                     |                               | <b>.</b> .           |           |          |          | 1        | 2,989 m                                      | 3,166 ms                                     | 3.254 ms                                                 | 4.030 ms                                     |           |
| Reasonable values for (35 and (36                   |                               |                      |           |          |          |          |                                              |                                              | 2,9 41 ms                                                | 3,750 ms                                     | 2         |
|                                                     | 2,854 ms                      | 2,989 ms             | 3, 103 ms | 4,186 ms | 2        |          |                                              |                                              |                                                          |                                              |           |
| lu vitle le prie de C                               | 2,092 ms                      | 2,153 ms             | 2 238 ms  | 3,276 ms | 2        |          |                                              |                                              |                                                          |                                              |           |
| TWIIN DEHOOS <2                                     | 2,854 ms                      | 2,971 ms             | ,060 ms   | 4,396 ms | L,       |          |                                              |                                              |                                                          |                                              |           |
|                                                     | 3,277 ms                      | 3,373 ms             | 3,460 ms  | 4,640 ms | <u></u>  |          |                                              |                                              |                                                          |                                              |           |
| or for the prime of aircourting the stille or brack |                               |                      |           |          |          |          |                                              |                                              | 3,239 ms                                                 | 4,640 ms                                     |           |
|                                                     | 3,698 ms                      | 2,506 mb             | 3,871 ms  | 8,946 ms |          |          |                                              |                                              |                                                          |                                              |           |
|                                                     |                               |                      |           |          |          |          |                                              |                                              | 3,483 ms                                                 | 4,920 ms                                     | S         |
| cood cimulation                                     | 3,491 ms                      | 3,864 ms             | 3,864 ms  | 4,920 ms | C        |          |                                              |                                              |                                                          |                                              |           |
| Speed siniulailoi                                   | 3,129 ms                      | 3,181 ms             | 3,181 ms  | 4,744 ms | ž        |          |                                              |                                              |                                                          |                                              |           |
|                                                     | 3,451 ms                      | 3,548 ms             | 3,548 ms  | 4,920 ms | Å        |          |                                              |                                              |                                                          |                                              |           |
|                                                     | 3,392 ms                      | 3,532 ms             | 8,532 ms  | 5,182 ms | 4        |          |                                              |                                              |                                                          |                                              |           |
|                                                     | IOI A TYPICALAUTOMOTIVE SETUD |                      |           |          |          |          |                                              |                                              |                                                          |                                              | )         |
| TOT A TYPICA                                        | IQUI                          | omc                  | DIIVE     | e sei    | Up       |          | 3,315 ms                                     | 3,336 ms                                     | 8,336 ms                                                 | 5,094 ms                                     | 5         |
| for a typical                                       |                               | omc                  |           | e sei    | υp_      |          | 3,315 ms<br>3,431 ms                         | 3,336 ms<br>3,817 ms                         | 8,336 ms<br>3,817 ms                                     | 6,718 ms                                     | <u>IS</u> |
| tor a typical                                       | I aui                         | omc                  | DIIVE     | e sei    | υp       |          | 3,315 ms<br>3,431 ms<br>3,511 ms             | 3,336 ms<br>3,817 ms<br>3,733 ms             | 8,336 ms<br>8,817 ms<br>3,733 ms                         | 6,718 ms<br>6,772 ms                         | Ishc      |
| tor a typical                                       | I dui                         | 0 182 mc             |           |          |          | 3 149 ms | 3,315 ms<br>3,431 ms<br>3,511 ms<br>3,471 ms | 3,336 ms<br>3,817 ms<br>3,733 ms<br>3,587 ms | 8,336 ms<br>3,817 ms<br>3,733 ms<br>3,587 ms<br>3,578 ms | 6,718 ms<br>6,772 ms<br>6,754 ms<br>6,754 ms | Ishot     |

| D,182 ms | 0,391 ms | 2,068 ms | 2,726 ms | 3,148 ms | 3,412 ms |
|----------|----------|----------|----------|----------|----------|
| 0,166 ms | 0,383 ms | 2,080 ms | 2,805 ms | 3,184 ms | 3,416 ms |

UNIVERSITÉ DU LUXEMBOURG

6,718 ms

6,982 ms

3,578 ms

3,416 ms

# Typical use-cases of quantile-based performance evaluation



### Use-case 1: OBD2 request through a gateway





#### Use-case 1: OBD2 request through a gateway





## Use-case 2: end-to-end response time of a 10ms control frame



|     |     |    |   |       |       |       |       | Q     | . = 2 | 3.9   |        |
|-----|-----|----|---|-------|-------|-------|-------|-------|-------|-------|--------|
| T10 | 6 P | 10 | 0 | 0,684 | 0,924 | 2,241 |       | - 0   |       |       | _      |
| T11 | 4 P | 10 | 0 | 0,166 | 0,341 | 1,681 |       | max   | K= ^  | 12.1  |        |
| T12 | 8 P | 10 | 0 | 0,424 | 0,658 | 2,153 |       |       | -     |       | -      |
| T13 | 8 B |    |   | 0,522 | 0,866 | 2,573 | 4,149 | 6,244 | 7,593 | 8,87  | 12,129 |
| T14 | 8 P | 20 | 0 | 0,72  | 1,058 | 2,726 | 3,258 | 3,511 | 3,614 | 3,719 | 3,735  |
| T15 | 8 P | 20 | 0 | 1,168 | 1,588 | 3,094 | 3,511 | 3,741 | 3,784 | 3,962 | 3,977  |



### Concluding remarks

- 1 Timing verification techniques & tools should not be trusted blindly
- 2 Simulation is well suited to systems that requires timing guarantees but

✓ Are not well amenable to schedulability analysis
✓ Or can tolerate deadline misses with a controlled level of risk

3 Some methodological aspects

✓ Determine quantile wrt criticality, and simulation length wrt to quantile

 $\checkmark$  Simulator and models validation

 High-performance simulation engine needed for higher quantiles

