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Abstract—The Kalray MPPA2 manycore processor implements
a clustered architecture, where clusters of cores share a local
memory, and communicate through a RDMA-capable network-
on-chip (NoC). This NoC has been designed to allow guaran-
teed delays by the adequate configuration of traffic limiters
at ingress and the choice of routing. We first present the
challenges related to the routing of concurrent flows and a
strategy that solves it. Routing challenges include deadlock-
free routing, which is always an issue on wormhole switching
networks, fairness of resource allocation between flows, and
ensuring the feed-forward property required by deterministic
network calculus (DNC). Second, we present a linear formu-
lation based on DNC for computing end-to-end delay bounds
of concurrent feed-forward flows on the MPPA2 NoC. Finally,
we compare this linear formulation to a classic formulation
originally designed for the AFDX avionics networks.

1. Introduction

Network-on-Chip [1] (NoC) is the dominant paradigm
for on-chip interconnects. While mostly applied to best-
effort communication scenarios, NoC interconnects can also
be engineered to provide service guarantees by using a
Deterministic Network Calculus (DNC) approach [2]. In
this paper, we present our approach to NoC management
for Kalray MPPA2 processor [3], based on DNC. Assuming
that application tasks are assigned endpoints on the NoC,
we proceed in two steps:

1) route the flows to ensure deadlock-free operations,
while fairly allocating maximum rates to the flows;

2) using DNC, compute the maximum queue backlogs
and upper-bounds on the end-to-end latencies.

In order to apply DNC to the MPPA2 NoC, we need
to determine the network elements traversed by each flow,
which implies selecting a route between its endpoints. More-
over, application of DNC require that flows be routed over
a feed-forward network, that is, the graph of directed links
traversed by the flows has no cycles (circuits) [4].

The motivation for this work is an anticipation on how
avionics certification could be applied to a MPPA manycore
processor: each cluster would be considered as a shared
memory multicore processor, with certification based on the

EASA CRI-MCP [5] guidelines; inter-cluster communica-
tion would be carried by the NoC, where the certification
principles of AFDX based on DNC analysis would apply.

Organization of the paper is as follows. Section 2 intro-
duces the MPPA2-256 Bostan NoC architecture, discusses
previous work, and summarizes basic results of Determin-
istic Network Calculus (DNC). In Section 3, we show that
deadlock-free routing on a wormhole switching network and
ensuring feed-forward flows are equivalent. In Section 4,
we present a linear formulation based on DNC to compute
end-to-end latencies for concurrent flows over the MPPA2
NoC. In Section 5, this linear formulation is compared to
a classic formulation originally designed for the AFDX
avionics networks and adapted to the MPPA2 NoC.

2. Background

2.1. The MPPA2-256 Bostan NoC

The MPPA2-256 processor [3] integrates 256 processing
cores and 32 management cores on a chip, all implementing
the same VLIW core architecture. The MPPA2-256 architec-
ture is clustered with 16 compute clusters and 2 I/O clusters,
where each cluster is built around a multi-banked local
static memory shared by 16+1 (compute cluster) or 4+4
(I/O cluster) processing + management cores. The clusters
communicate through a RDMA NoC, with one node per
compute cluster and 8 nodes per I/O cluster.

The MPPA2 NoC is a direct network based on a 2D-
torus topology extended with extra links connected to the
otherwise unused ports of the NoC nodes on the I/O clus-
ters (see Fig. 1). The MPPA2 NoC implements wormhole
switching with source routing and without virtual channels.
With wormhole switching, a packet is decomposed into flits
(32-bits on the MPPA2 NoC), which travel in a pipelined
fashion across the network elements, with buffering and flow
control applied at the flit level. The packet follows a route
determined by a bit string in the header.

The motivation for implementing wormhole switching
with source routing and without virtual channels is the
reduction of hardware dedicated to the network elements
and interfaces. However, wormhole switching networks are
sensitive to deadlocking. Fig. 2 illustrates a deadlock situa-
tion, where flow A cannot use link R3 → R2 because flow
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Figure 2. Deadlock with a wormhole switching NoC.

B is using it. Likewise, flow B needs R1 → R4 held by
flow A. Deadlock requires that router queues be full.

A MPPA2 NoC node is composed of a router (Fig. 3)
and a cluster interface. The network elements of the MPPA2
NoC appear in Fig. 3: the links between nodes, the switches
that steer packets depending on the routing information, the
’turns’ inside nodes, and the link arbiters. Each outgoing
link has one such arbiter, which selects whole packets by
round-robin across the adjacent queues. There is one queue

Figure 3. Structure of a MPPA2 NoC router.

per incoming direction or ’turn’.
We call a queue active if there is some flow passing

through it and there is another queue in the same link arbiter
with some flow. A non-active queue either has no flow
passing through it, or is the only one in the link arbiter with
some flow. If so, there are no effects on the packets beyond
a constant delay and the queue can be ignored except for
the constant delay that needs to be added to the end-to-end
latency bound.

2.2. Context and Previous Work

They have been several studies designed to compute
upper bounds on the worst case traversal time (WCTT) of a
NoC by a data flow. Nevertheless, they mainly consider ei-
ther a pure wormhole solution, with hop-level flow-control,
or systems with hardware dedicated to QoS management
such as packet priorization and preemption. Hop-level flow
control and packet preemption are not amendable to DNC
analysis. In fact, we found only a few approaches based on
DNC which are applicable to the MPPA2 NoC architecture.
An overview of the state of the art of NoC performance
evaluation can be found in [6].

The recursive calculus has been designed to compute
bounds on the SpaceWire technology, a wormhole-based
technology [7]. It has been adapted to the MPPA NoC in [8]
and compared with a DNC-based approach on an example,
that will also be considered in this article. In [9], authors
consider a DNC model for a NoC with wormhole switch-
ing, input queuing, and Weighted Round Robin arbitration.
However, the MPPA2 NoC only has output queuing.

Both [8], [9] take into account the back-pressure mech-
anism associated to the wormhole switching. Back-pressure
occurs when the buffer in a switch is full. In classical store
and forward systems, when a buffer is full, either incoming
or local packets are dropped. In wormhole switching, when
a buffer is full, the upstream link stops. Then, its own
buffer may fill, up to also being full. This “back-pressure”
mechanism may goes back up to the source, and may also
block others flows sharing the blocked links. In pathological
cases, this may lead to a global network stall, cf. Fig 2.

Since the back-pressure mechanism has a unbounded
impact on the NoC performances, it must not be activated
in a real-time application environments. And since this
mechanism is activated only when local buffers are full,
one can configure the traffic shapers in a way such that NoC
buffers are never fully used. From the network calculus point
of view, when the back-pressure mechanism is not active,
the MPPA2 NoC is simply a network using a Round-Robin
arbitration and cut-through forwarding.

A network-calculus model of the Round-Robin policy
has been presented in [10], [11]. It is compared in [12] with
the “arbitrary multiplexing” model in the case of a NoC.

A computation of the MPPA NoC delays based on net-
work calculus has been presented in [13]. The approach has
been refined for the MPPA2 NoC in [14], whose results are
summarized in Section 4. These authors study the problem



of deadlock-free feed-forward routing on the MPPA2 NoC
in [15], whose main results are reported in Section 3.

Note that solving both routing and resource assignment
withing the network calculus framework have also been
studied in [16], [17], [18] in a different context: it considers
that the flow throughput is an input of the problem and that
per flow resource reservation can be done.

2.3. Deterministic Network Calculus (DNC)

Deterministic Network Calculus [4] is a framework for
performance analysis of networks based on the representa-
tion of flows as cumulative data over time. Given a network
element with cumulative arrival and departure functions A
and A′, the delay for traversing the network element and the
backlog of data correspond respectively to the horizontal and
the vertical deviations between A and A′ (Fig. 4).

Network Calculus exploits the properties of the (min,+)
algebra, in particular it introduces the following operations:

convolution: (f ⊗ g)(t) , inf
0≤s≤t

f(t) + g(t− s)

deconvolution: (f � g)(t) , sup
s≥0

f(t+ s)− g(s)

Let A be a cumulative data function. An arrival curve
α is a constraint on A defined by ∀0 ≤ s ≤ t : A(t) −
A(s) ≤ α(t− s), which is equivalent to A ≤ A⊗ α. Fig. 5
illustrates the smoothing constraint of the arrival curve α
on the cumulative function A. This particular type of arrival
curve α(t) = (ρt+σ)1t>0, known as affine or leaky-bucket,
is denoted γρ,σ with ρ the rate and σ the burstiness.

Let A,A′ be the cumulative arrival and departure func-
tions of a network element. This element has β as a service
curve iff: ∀t ≥ 0 : A′(t) ≥ inf0≤s≤t(A(s)+β(t−s)), which
is equivalent to A′ ≥ A⊗ β. Fig. 6 illustrates the guarantee
offered by the service curve β. This particular type of service
curve β(t) = R[t− T ]+, known as rate-latency, is denoted
βR,T with R the rate and T the latency.

Key results of Deterministic Network Calculus include:

• The arrival curve of the aggregate of two flows is
the sum of their arrival curves.

• A flow A with arrival curve α that traverses a server
with service curve β results in a flow A′ constrained
by the arrival curve α� β.

• The service curve of a tandem of two of servers with
service curves β1 and β2 is β1 ⊗ β2.

• If a flow has arrival curve α(t) on a node of ser-
vice curve β, the backlog bound is maxt≥0(α(t)−
β(t)) and the delay bound is hDev(α, β) =
maxt≥0{inf s ≥ 0 : α(t) ≤ β(t+s)}. These bounds
are respectively the maximum vertical deviation and
maximum horizontal deviation between α and β.

3. Max-Min Fair Feed-Forward Routing

The routing problem on the MPPA2 NoC has three
objectives. First, routes must be chosen to avoid deadlock,

which is always an issue on wormhole switching networks.
Second, the resulting routes must compose a feed-forward
network, to enable application of the main DNC results.
Third, the selection of routes for each flow must optimize
use of the global network capacity, while guaranteeing a fair
allocation of bandwidth to the flows.

In this section, we include the main contributions of
[15], with the experimental results extended to include the
maximum and average of upper bounds on end-to-end delays
computed according to the linear formulation of Section 4.

3.1. The Feed-Forward Routing Problem

On a wormhole switching network, the objectives of
deterministic deadlock-free routing and feed-forward flows
are connected:

• In a connection network, deadlock results from cir-
cuits of agents and resources connected by a wait-for
relation [19]. With wormhole switching, agents are
packets, and resources are the router internal turns
and the external links between routers.

• Deadlocks can be avoided by eliminating directed
cycles in the resource dependence graph. This is
accomplished by imposing a partial order on the
resources and then insisting that an agent allocates
resources in ascending order [20].

• A definition of a feed-forward network is that it is
possible to find a numbering of its links such that
for any flow through the network, the numbering of
its traversed links is an increasing sequence [21].

As the links considered in a feed-forward network form a
subset of the resources considered for deadlock, the number-
ing of these resources so that they are allocated in ascending
order by a packet is also a numbering of the links which
are traversed in ascending order by the flows. Therefore, ap-
plication of a deterministic deadlock-free routing algorithm
ensures that the flows are feed-forward.

Deadlock-free routing algorithm for wormhole switching
have been proposed, mostly for 2D-mesh topologies. The
classic ones are X-Y or Dimension-Ordered [20] and the
Turn Model [22]. The X-Y routing has no path diversity,
while the Turn Model variants have irregular diversity. This
problem led to the formulation of the Odd-Even [23] turn
model, which has been improved as the Hamiltonian Odd-
Even turn model [24] to accommodate multicasting.

Independently from the computer architecture commu-
nity, the communication network community has proposed
a series of techniques to ensure that flows are feed-forward.
In particular, the Turn Prohibition algorithm [25] finds a
set of prohibited turns that ensure the feed-forward routing
property on an arbitrary network topology of bi-directional
links and turns. A turn is a triple of nodes (a, b, c) connected
by two links and the algorithm requires that if turn (a, b, c)
is prohibited, so must be turn (c, b, a). Turn Prohibition has
been improved to yield Simple Cycle Breaking [26], which
still requires disabling both directions of a turn at once.



Figure 4. Flow arrival and departure as cumula-
tive data functions over time.

Figure 5. Arrival curve α for cumulative func-
tion A.

Figure 6. Service curve β for a server A→
A′ .

In order to ease implementation of routing under Turn
Prohibition, [27] introduces the Turnnet, which is a graph
whose nodes correspond to the external links, and arcs
to the internal turns of the network. Application of any
cycle-breaking technique to ensure feed-forward flows on
the network amounts to removing arcs from the Turnnet
so it becomes acyclic. It is then used to compute routes, for
instance by applying Dijkstra’s shortest path algorithm [27].

Observe that in case of wormhole switching, the Turnnet
can be expanded into the resource dependence graph by
splitting each arc and inserting a node corresponding to
the turn queue. As this expansion cannot introduce a (di-
rected) cycle, an acyclic Turnnet implies an acyclic resource
dependence graph for wormhole switching. So ensuring
feed-forward flows on such networks implies deadlock-free
routing when using the corresponding paths.

3.2. Routing with Max-Min Fairness

Among the possibly multiple paths proposed by a rout-
ing algorithm between each pair of endpoints of a flow, only
one can be selected. This constraint of routing a flow under
a unique path between its endpoints comes from the MPPA2
NoC architecture, as both packet ordering inside a flow and
flow regulation of (rate, burstiness) at ingress can only be
ensured along a single path. Global allocation of bandwidth
to flows on a network is a fairness problem, and we use
max-min fairness [28] whose objective is to maximize the
lowest flow rate, then the next lowest flow rate, etc.

Precisely, a rate allocation is max-min fair iff an increase
of any rate must be at the cost of a decrease of some already
smaller rate. Max-min fair allocation is solved by the simple
“Water Filling” algorithm [29] in case there is a single path
available per flow. In case of multiple paths available per
flow and splittable flows, the Max-Min Fair with Splittable
Paths (MMFSP) problem is still of polynomial time com-
plexity and can be solved as a series of linear programs
[30]. When only a single path among those available can be
assigned to the flow, the resulting Max-Min Fairness with
Unsplittable Paths (MMFUP) problem is NP-hard [29].

Our first approach to routing is to solve the MMFUP
problem instances by enumeration. For a given feed-forward
routing algorithm, the search tree is deployed by assigning a
unique path to each flow, selected among the minimal path
diversity obtained by enumerating all the allowed shortest
paths between each flow endpoints. On the leaves of this

search tree, the problem is solved by applying the Water
Filling algorithm of [28]. This gives a vector of flow rates,
including the minimum rate. Water Filling is skipped if
the problem instance has a link shared by n flows and its
capacity divided by n is lower than a previously computed
minimum rate. Finally, a solution whose sorted vector of
flow rates is lexicographically maximal is selected as in [28].

Our second approach to routing is a heuristic that re-
duces the search space by not enumerating the paths that
carry a split flow of low rate. Each internal node of the
search tree corresponds to a MMFSP problem instance,
which is solved by a series of linear programs. At a search
tree node, iterate over three steps: select a split flow of
lowest rate; remove all its path(s) not carrying the maximum
amount of sub-flow; solve the resulting MMFSP problem
instance. Following this iteration, either all flows follow a
unique path, or there exists a flow of minimal rate equally
split among its alternate paths. Recursively apply the heuris-
tic on the new problem instances where each of the alternate
paths of this flow has become its only allowed path.

3.3. Experimental Comparisons

We compare the routing approaches on two representa-
tives of each family of algorithms: X-Y (XY) and Hamil-
tonian Odd-Even [24] (HOE) for deadlock-free routing;
Turn Prohibition [25] (TP) and Simple Cycle Breaking
[26] (SCB) for feed-forward flows. The routing problems
include the example in [14], an AFDX example from [8],
and also the classic Bit-Complement, Bit-Reverse, Shuffle
and Tornado instances. Only the MPPA2 compute clusters,
re-numbered as a 4 × 4 grid, are considered as endpoints
(as illustrated in Fig. 8 for Bit-Complement). Except for
XY, all routing algorithms allow alternate minimal paths,
whose diversity is displayed in Fig. 7. Overall, HOE and
SCB provide the highest minimal path diversity.

The results of max-min fair allocation of flow rates
appear in Table 3, where we compare the enumeration
approach based on Water Filling to the heuristic approach
based on MMFSP resolutions. Columns #L display the
number of leaves in the respective search trees, however in
case of enumeration the exploration is limited to 50K steps
in order to limit computation times. The main criterion for
comparison is the minimum of flow rates ρmin, although
the average of flow rates ρavg gives an indication on how
the global NoC bandwidth is exploited. The maximum and
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average end-to-end latencies d∗max and d∗avg are computed
using the linear formulation of Section 4 for 17-flit packets.

We observe in Table 3 that the heuristic drastically
reduces the number of leaves (#L) explored, while pro-
viding good solutions. In case of BC-SCB, the heuris-
tic outperforms the enumeration because the latter suffers

from the 50K steps limitation. The deadlock-free routing
techniques (XY, HOE), although restricted to the 2D-mesh
topology subset, appear to perform better than the feed-
forward techniques (TP, SCB). Surprisingly, XY routing that
has no minimal path diversity outperforms HOE on Bit-
Complement and Tornado. The explanation is that HOE does
not allow some XY path, as illustrated in Fig. 9.

4. Linear Formulation for the MPPA2 NoC

The MPPA2 NoC is a RDMA-capable network that
can be configured for regulating the injection rate ρi and
burstiness σi at ingress of each flow fi, that is, setting the
parameters of a leaky-bucket arrival curve. In this section,
we summarize the linear formulation of the DNC equations
for the MPPA2 NoC that has been developed in [14], [15].

The motivation of this formulation is to provide upper
bounds on queue backlogs and flow end-to-end delays, while
accounting for the shaping implied by the peak rate r of
one flit per cycle in the network elements. Replacing the
flow rates by the values computed when solving the Feed-
Forward Routing problem (Section 3) yields a system of lin-
ear inequalities with the flow burstiness as variables. Thanks
to the feed-forward flows, the system of linear inequalities
is acyclic and solved in one pass.

4.1. Effects of Link Shaping

In this linear formulation, each flow fi is associated with
a series of arrival curves γρi,σj

i
, where ρi is its constant rate

and σji its burstiness in front of queue qj . Queue qj receives
the aggregates of flows F j passing through it, so its arrival
curve is of leaky-bucket type γρj ,σj with ρj =

∑
fi∈F j ρi

and σj =
∑

fi∈F j σ
j
i , shaped by the turn peak rate r. This

yields the arrival curve min(rt, σj + ρjt)1t>0, which is a
special case of the standard T-SPEC arrival curve α(t) =
min(M + pt, rt+ b)1t>0 used in IntServ [31].

Assume that a link arbiter offers a rate-latency service
curve βRj ,T j to queue qj with Rj ≤ r. The delay dj for
queue qj is the maximum horizontal deviation between the



arrival curve and the service curve. Application of the T-
SPEC arrival curve on such service curve yields [4]:

dj = T j +
σj(r −Rj)
Rj(r − ρj)

(1)

Let lmax
i be the maximum packet size for flow fi. At

ingress, whole packets are atomically injected at rate r. Call
θ the date when injection ends. We have rθ = lmax

i and
lmax
i ≤ σi + ρiθ, so:

∀fi ∈ F : σi ≥ σmin
i , lmax

i

r − ρi
r

(2)

We now express the values ρji and σji for all flows
fi ∈ F j for an active queue qj . If qj is the first active
queue traversed by the flow, then σji = σi . Else, let qk be
predecessor of qj in the sequence of active queues traversed
by flow fi, with βRk,Tk its service curve. When flow fi tra-
verses queue qk, its burstiness increases differently whether
it is alone or aggregated with other flows in qk.

If the flow is alone in queue qk, we apply the classic
result of the effects of a rate-latency service curve βR,T on
a flow constrained by an affine arrival curve γρ,σ. The result
is another affine arrival curve γρ,σ+ρT [4], so:

σji = σki + ρiT
k (3)

Else, we apply Theorem 6.2.2 (Burstiness Increase
Due to FIFO Multiplexing, General Case) [4], where flow
1 is token bucket constrained with rate ρ1 and burstiness
σ1, and flow 2 is constrained by a sub-additive arrival curve
α2. Because of link shaping in qk, α2(t) = min(rt, ρ2t +

σ2)1t>0. As a result, b1 = σ1 + ρ1(T + σ2(r+ρ1−R)
R(r−ρ2) ) [14].

With ρ1 = ρi, σ1 = σki , b1 = σji , ρ2 =
∑

l∈Fk,l 6=i ρl, and
σ2 =

∑
l∈Fk,l 6=i σ

k
l , this yields:

σji = σki + ρi

(
T k +

(
∑

l∈Fk,l 6=i σ
k
l )(r + ρi −Rk)

Rk(r −
∑

l∈Fk,l 6=i ρl)

)
(4)

Not accounting for the link shaping would yield b1 =
σ1+ρ1(T + σ2

R ), by application of Corollary 6.2.3 (Bursti-
ness Increase due to FIFO) [4]. This result is worse than
Eq. (4) because ρ1 + ρ2 < R⇒ r + ρ1 −R < r − ρ2.

4.2. Link Arbiter Service Curves

On the MPPA2 NoC, the output link arbiters operate
in round-robin on turn queues at the packet granularity,
while each queue contains flows aggregated in FIFO. As
the packets presented to a link arbiter are not processed in
FIFO order, previous work (e.g. [11]) would have to assume
blind multiplexing between all flows and fail to exploit
FIFO aggregation. This is addressed in [14] by exposing the
service offered to each queue of a link arbiter: either, the rate
and latency ensured by round-robin packet scheduling; or,
the residual service guaranteed by blind multiplexing across
queues when the round-robin service does not apply. Then,
aggregation need only be considered withing the scope of
single queues so is FIFO.

The service curve offered by a link arbiter to each of its
queues is abstracted as a rate-latency function βj = βRj ,T j .
The first approach to derive this curve is to consider the
behavior of the round-robin arbiter, assuming that each flow
fi has its packet sizes bounded by a minimum lmin

i and
a maximum lmax

i . Let lmin
F j , minfi∈F j lmin

i and lmax
F j ,

maxfi∈F j lmax
i be respectively the minimum and maximum

packet sizes for qj . Let Aj be the set active queues in the
link arbiter of qj , and Bj , Aj −{qj}. The general round-
robin service curve βj = βRj ,T j for qj is:

Rj =
rlmin
F j

lmin
F j +

∑
k∈Bj lmax

Fk

and T j =
∑

k∈Bj lmax
Fk

r
(5)

The second approach to derive a service curve for queue
qj is to consider that the round-robin arbiter serves packets
at peak rate r according to a blind multiplexing strategy
across the queues. Application of Theorem 6.2.1 (Blind
Multiplexing) [4] yields the blind multiplexing service
curve βj = βRj ,T j for qj :

Rj = r −
∑
k∈Bj

ρk and T j =
∑

k∈Bj σk

r −
∑

k∈Bj ρk
(6)

The blind multiplexing service curve must be used whenever
the sum of flow rates inside qj exceeds Rj in Eq. (5). Else,
we select the formula that evaluates to the lowest T j .

4.3. End-to-End Latency Bound

For computing an upper bound on the end-to-end latency
of any particular flow fi, we proceed in three steps. First,
compute the left-over (or residual) service curve βji of each
active queue qj traversed by fi. Second, find the equivalent
service curve β∗i offered by the NoC to flow fi through
the convolution of the left-over service curves βji . Last, find
the end-to-end latency bound by computing d∗i the delay
between αi the arrival curve of flow fi and β∗i . Adding
d∗i to the constant delays of flow fi such as the traversal of
non-active queues and other logic and wiring pipeline yields
the upper bound. This approach is similar in principle to
the Separated Flow Analysis (SFA) [11], even though the
latter is formulated in the setting of aggregation under blind
multiplexing, while we use FIFO multiplexing.

For the first step, we have two cases to consider at each
active queue qj . Either fi is the only flow traversing qj , and
βji = βRj ,T j from equations (5) or (6). Or, fi is aggregated
in qj with other flows in F j . Packets from the flow aggregate
F j are served in FIFO order, so we may apply Corollary
6.2.3 (Burstiness Increase due to FIFO) [4]. This yields
the left-over service curve βji = βRj

i ,T
j
i

for an active queue
qj traversed by fi:

Rji = Rj −
∑

l∈F j ,l 6=i

ρl and T ji = T j +

∑
l∈F j ,l 6=i σ

j
l

Rj
(7)

For the second step, we compute the convolution β∗i of
the left-over service curves βji . Let Qi denote the set of



active queues traversed by flow fi. Thanks to the properties
of rate-latency curves [4], β∗i is a rate-latency curve whose
rate R∗i is the minimum of the rates and the latency T ∗i is
the sum of the latencies of the left-over service curves βji :

R∗i = min
j∈Qi

Rji and T ∗i =
∑
j∈Qi

T ji (8)

For the last step, we compute the delay d∗i between αi
the arrival curve of flow fi at ingress and β∗i . This flow is
injected at rate ρi and burstiness σi, however it is subjected
to link shaping at rate r as it enters the network. As a result,
αi = min(rt, σi + ρit)1t>0 and we may apply Eq. (1):

d∗i = T ∗i +
σi(r −R∗i )
R∗i (r − ρi)

(9)

5. Comparing DNC Formulations

In this section, we compare the linear DNC formulation
of Section 4 to a “local” DNC formulation, which is an
adaptation to the MPPA2 NoC of an algorithms designed to
analyze AFDX networks [32], [33], [34]. In these compar-
isons, we assume that the flow paths are pre-determined.

5.1. Local Formulation

An AFDX switch applies a 2-levels non-preemptive
static priority scheduling, meaning that in each output port,
there are two queues. All flows from the same priority level
are set in the same queue. The queue with the low priority
is selected only if the queue with the high priority is empty.
All flows sharing a queue are served with a FIFO policy.

The network calculus analysis consists in: 1) computing
a residual service, βq for each queue q; 2) computing the
global arrival curve in this queue αq by summing the arrival
curves of all individual flows, and considering the shaping;
and 3) computing dq = hDev(αq, βq) a bound on the delay
of the queue, which is also a bound on delay for all flows
in the queue due to FIFO aggregation.

The delay bound of a flow f is then computed as
the sum of the queue delay bound for all crossed servers.
This approach is quite different from the linear formulation
presented in Section 4, in several points.

First, it relies on a class more generic than linear curves,
which is more accurate in general. For example, consider a
periodic (resp. sporadic) flow sending one packet of maxi-
mal size L every P time unit (resp. not quicker than every
P time unit). Two arrival curves can be computed for this
kind of flow: a linear one, αl(t) = L+ L

P t, or an exact one,
αe(t) =

⌈
tL
P

⌉
, where d·e denotes the ceiling function (cf.

Fig. 10). The AFDX tool, presented in [34] can handle the
Ultimately Pseudo Periodic (UPP) class of functions, that
generalizes both kinds of curves.

Second, it does no perform the end-to-end SFA analysis
but computes per queue local delay bound.

Third, it does not apply Corollary 6.2.3 (Burstiness
Increase due to FIFO) [4] since it can be applied only in
the case of linear arrival curves.

αe

αl

P

L

Figure 10. Two arrival curves for a periodic/sporadic flow of period P and
packet length L

Figure 11. Case study from [14]

Last, AFDX switches use static priorities to share the
bandwidth between queues connected to an output port.
For the comparisons, the AFDX tool has been adapted to
consider round-robin output arbitration policy, using Eq. (5),
like the linear formulation.

5.2. First Example

The first example comes from [14]. Four flows are
considered, f1, . . . , f4, with a maximum packet size of 17
flits. All flows have a long-term rate 1

3 but f1 that have
r1 = 2

3 . The admissible bursts at network ingress are 34
3 but

f1 that have b1 = 17
3 .

The upper bounds on delays for this example, computed
with the linear and the classic formulation, are reported in
Table 1. The results are comparable, but the linear formula-
tion gives better (smaller) bounds. This is due to several
differences between an AFDX network and the MPPA2
NoC, and also to the fact that the linear formulation fits
very well the MPPA2 NoC architecture.

The flow contract is the first difference: in AFDX, a flow
(called Virtual Link) is characterized as a sporadic flow, with
a maximal frame size and an inter-frame minimal time. As
shown in Fig. 10, a linear model cannot capture exactly
this behavior, it only does an upper approximation. In the
MPPA2 NoC, traffic shaping is done at ingress by a token-
bucket regulator, which enforces a linear constraint. Whereas
it had been shown in [34] than for typical AFDX networks,
the linear formulation is 18% pessimistic with respect to a
more accurate one, it is sufficient for the MPPA2 NoC.

A second difference is related to the queuing architecture
and its impact on bursts. In an AFDX switch, the flows from

f1 f2 f3 f4
Linear formulation 25 110 100 34
Local formulation 25 170 136 34

TABLE 1. BOUNDS ON NOC DELAY PER FLOW IN CYCLES.
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Figure 12. Sum of two-sloped functions

two different input ports can be merged into the same output
port. In a MPPA2 NoC router, for each output port, there is a
queue dedicated to each input port (cf. Fig. 3). In an AFDX
switch, each queue can receive traffic from several input
links, whereas in the MPPA2 NoC, it received only from
one input link. This changes the kind of curve required to
accurately model a switch. As shown in Fig. 12, the sum of
two piece-wise linear functions, each one having two slopes,
leads to a piece-wise linear function with three slopes. This
implies that a linear model with two slopes is sufficient to
capture the MPPA2 NoC behavior, whereas a more complex
one is required for AFDX.

A third difference stems is the use of Corollary 6.2.3
[4] by the linear formulation for the left-over service in
Eq. (7). Considering a set of flows (fi)i∈[1,n] sharing a FIFO
queue, each flow having a leaky-bucket arrival curve γri,bi ,
the increase of the burst of the flow fi does not depend on
its own burst size, but only on the sum of the others ones. In
AFDX networks, since a queue is in general shared by a lot
of flows, removing its own burst size has a limited positive
impact, whereas approximating a sporadic flow as a leaky-
bucket one has a large negative impact. This explains why
the the local formulation originally designed for AFDX does
not implement this result.

These differences explain the numerical results observed
in this example. Consider the flow f2: its crosses three
routers. In the first router, R2, it shares the output link with
the flow f1, with a Round-Robin policy, each flow being
alone in its own queue. The situation is the same in the
second crossed router, R10, with the flow f3. In the last
router, R8, the flows f2 and f3 share a common queue,
with a FIFO aggregation policy, and both share the output
link with the flow f4 with a Round Robin policy.

In the linear formulation, the Round-Robin link arbitra-
tion is used to compute the residual service in routers R2

and R10, using Eq. (5), leading in both cases to a latency
T 2 = T 10 = 17, since the flow have to wait at most one
packet of the competing flow before getting access to the
output link, and a rate R2 = R10 = 1

2 , since all flows having
the same packet sizes, the round-robin arbiter shares the
throughput in two equal parts In the last router, R8, the flows
f2 and f3 share a common queue. First, one has to select the
residual service offered by the link arbiter. Since the total
load of both f2 and f3 is 2

3 , it overtakes the service offered
by the Round-Robin arbiter, so the Blind Multiplexing result
of Eq. (6) is used. It leads to a latency T 8 = 17, the latency
associated to one packet, and a rate R8 = 2

3 since the other
flow uses only 1

3 of the throughput. But this service is shared
by f2 and f3. The left-over service dedicated to flow f2 is

computed using Eq. (7), leading to R8
2 = 2

3 − ρ3 = 1
3 and

T 8
2 = T 8 +

σ8
1

R8 = 17 +
σ8
1

2/3 = 17 + 17
2/3 = 42.5.

The interpretation is that, first, the residual throughput
is 1

3 , since f2 shares the output link with two flows, each
of throughput 1

3 , second, the latency is decomposed into
two terms, the 17 is the frame size of the flow f4, in the
other queue, and the 17

2/3 is the latency due to the sharing
of the queue with flow f4, which has a frame size of 17,
and this shared queue has a residual service of 2

3 . Once
the per router residual services have been computed, one
can compute the end-to-end delay, using Pay Burst Only
Once principle (PBOO), with Eq.(8). The latency term is
T ∗2 = T 2

2 + T 10
2 + T 8

2 = 17 + 17 + 42.5 = 76, 5. The
minimal rate is the one observed in the last router, R8

2 = 1
3 .

The application of Eq. (9) leads to 110.
In the local formulation, a per queue delay is computed.

In the first and the second routers, the Round-Robin residual
service is, like for the linear formulation, a service of rate
1
2 and latency 17. Eq. (9) can be applied to compute the
local delay, leading to a delay of 34: 17 cycles due to the
Round-Robin arbitration latency, and 17 cycles related to the
service of a packet. In the last router, one can also apply
the Blind Multiplexing result of Eq. (6), leading also to a
latency of 17 cycles and a throughput of 2

3 for the queue
that is shared between f2 and f3. The delay associated to
this queue is 102 cycles: 17 related to the latency and 85
related to the service of the burst at rate 2

3 .
We can now compare the approaches. Both linear and

local formulations consider a latency of 17 cycles per router,
since at each router, one packet of the other queue can be
served before having access to the output link. But the local
formulation also has a latency related to the handling of the
burst in each queue, whereas the linear formulation pays
burst only once by using the SFA principles. Moreover, the
use of Corollary 6.2.3 [4] for the left-over service in Eq. (7)
allows for a better handling of the FIFO aggregation.

5.3. Second Example

The second example comes from [8]. It considers 6
flows, f1, . . . , f6, each one being strictly periodic with a
packet size of 50 flits an a period of 1000 cycles. This yields
a rate of 5% on each flow. Unlike with the previous example,
the network capacity is not fully exploited.

In [8], the authors compare on this example the recursive
calculus (RC) and a network calculus model given in [13],
presented in here as “Naive” since it was a first DNC model
for the NoC of the first-generation MPPA processor. The
values of the NoC delay bounds are reported in Table 2
augmented with the results of the local and linear formula-
tions. Note that the results presented here are not exactly the
same as in [8]. There, the delay includes the arbitration in
the node, whereas the methods presented here only consider
the NoC delays. Then, the node arbitration delays have been
removed for flows f1, f2 and f3.

A first observation is that the linear and the local for-
mulations both outperform recursive calculus and an early



Figure 13. Case study from [8]

f1 f2 f3 f4 f5 f6
NC, Naive form. [13] 4104 4104 5155 3153 5255 3153
Recursive Calculus [8] 158 158 107 103 156 103
NC, Local form. 57 57 54 62 153 58
NC, Linear form. 105 105 52 52 150 100

TABLE 2. BOUNDS ON NOC DELAY PER FLOW, IN CYCLES.

DNC formulation for the MPPA [13]. Whereas in the previ-
ous experiment, the linear formulation always gave smaller
bounds, in this experiment, the local formulation is tighter
for half or the flows (f1, f2, f6).

Consider the flow f1. Its queuing delays in the first and
last routers crossed (R1 and R3) are null, since the output
throughput is always less than the input throughput. This is
handled by both the local and the linear formulation. The
difference come from the handling of the second router. In
this router, f1 shares with f2 a queue, (of index q) with a
FIFO policy, and both share the output link with f5 with a
Round-Robin policy. Both models the residual service of-
fered to the shared queue using Blind Multiplexing, leading
to a rate-latency service with latency T q = 50 (one frame
from competing flow f5) and a rate Rq = 0.95 (since the
rate of f5 is 0.05). Then comes a difference.

The linear formulation computes a residual service for
the flow f1, using Eq. (7), leading to Rq1 = 0.95 and T q1 =
100 = 50 + 50, since the flow f2 may have to wait one
frame from the flow f5 (of size 50) and one frame from the
flow f2 (also of size 50). The local formulation considers
that f1 is part of the aggregate flow f1 + f2. This flow has
a burst size of 100 flits (two frames), a long rate ρ1,2 = 0.1
and is shaped by the incoming link at a rate r = 1. It is
served at rate Rq = 0.95, after latency T q = 50, leading to
a local delay of 56, by local application of Eq. (9).

The interpretation of this result is that the local formu-
lation better captures the “serialization” between f1 and f2
coming from the same input link than the linear formulation.

6. Conclusions

This paper addresses three related problems of the
MPPA2 NoC exploitation. The first is the routing between
given endpoints, the second the NoC resource allocation and
the third is the end-to-end latency bound computation.

Enumeration Heuristic
ρmin ρavg d∗max d∗avg #L ρmin ρavg #L

E1-XY 0.333 0.500 68 51.3 1 0.333 0.500 1
E1-HOE 0.333 0.500 94 55.5 9 0.333 0.500 4
E1-SCB 0.333 0.417 111 68.0 1 0.333 0.417 1
E1-TP 0.333 0.417 111 68.0 64 0.333 0.417 8
E2-XY 0.333 0.500 128 56.2 1 0.333 0.500 1
E2-HOE 0.333 0.500 77 46.0 192 0.333 0.383 13
E2-SCB 0.333 0.500 85 51.1 1029 0.333 0.433 22
E2-TP 0.250 0.425 229 89.3 8 0.250 0.425 5
BC-XY 0.500 0.500 51 51.0 1 0.500 0.500 1
BC-HOE 0.333 0.427 145 77.6 3.69E06 0.333 0.417 20
BC-SCB 0.143 0.143 681 282.3 9.41E13 0.200 0.292 11
BC-TP 0.125 0.125 479 315.7 256 0.125 0.125 9
BR-XY 0.333 0.563 94 42.8 1 0.333 0.562 1
BR-HOE 0.500 0.750 34 17.5 256 0.500 0.656 9
BR-SCB 0.500 0.813 51 19.8 900 0.333 0.729 12
BR-TP 0.250 0.500 255 105.4 64 0.250 0.500 8
S-XY 0.500 0.750 34 17.5 1 0.500 0.750 1
S-HOE 0.500 0.875 34 9.3 36 0.500 0.844 7
S-SCB 0.500 0.844 51 12.4 200 0.500 0.750 11
S-TP 0.250 0.500 272 110.5 64 0.250 0.469 7
T-XY 0.500 0.500 51 51.0 1 0.500 0.500 1
T-HOE 0.333 0.438 128 76.8 1.19E07 0.250 0.391 4
T-SCB 0.500 0.594 68 35.3 5.54E06 0.250 0.437 15
T-TP 0.125 0.125 479 315.7 256 0.125 0.125 10

TABLE 3. COMPARISON OF MAX-MIN FAIRNESS ROUTING METHODS.
UNDER-PERFORMING SOLUTIONS IN A ROW APPEAR IN BOLD.

For routing, we show that both deterministic deadlock-
free wormhole switching routing algorithms from the com-
puter architecture community and feed-forward routing tech-
niques from the communication networks community can
be used. On a wormhole switching network, either ensures
deadlock-freedom and feed-forward flows, so that determin-
istic network calculus (DNC) can be applied.

For network resource allocation, we rely on the max-min
fairness objective in order to select a single path for each
flow among the minimal path diversity allowed by routing.
As exhaustive enumeration of minimal path combinations
becomes infeasible, we design an LP-based heuristic to
reduce the number of combinations to explore. We observe
that XY and HOE deterministic deadlock-free routing algo-
rithms perform best in term of higher minimal rates. XY,
in spite of having no path diversity, sometimes outperforms
HOE, as some XY paths are not included in HOE.

The evaluation of the NoC latency has been done us-
ing two DNC-based methods. The first one, called linear
formulation, is designed specifically for the MPPA2 NoC
architecture. The second one, called local formulation, is
adapted from a classic AFDX analysis. Both are compared
on two cases and we observe that, depending on the config-
uration, one or the other gives the best (i.e. smaller) bounds.
Some insight is given on the parameters that influence the
performance of each method: number of flows sharing a
FIFO queue, path length, etc. Nevertheless, both methods
achieve comparable results.

From a research point of view, these different results
provide the seeds of a cross-fertilization. This comparison
has allowed us to highlight the weak points of each method,
and to identify some progress perspective. From a produc-
tion perspective, the lightweight computations involved by



XY routing and solving the linear formulations open oppor-
tunities for on-line reconfiguration of the MPPA2 NoC.
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