
Schedulability Analysis of CAN with

Non-abortable Transmission Requests

Dawood A. KHAN

INRIA / INPL

Vandoeuvre, France

dawood.khan@loria.fr

Robert I. Davis

Department of Computer Science

University of York

York, UK

rob.davis@cs.york.ac.uk

Nicolas NAVET

INRIA / RealTime-at-Work

Vandoeuvre, France

nicolas.navet@inria.fr

Abstract

The analysis of the real-time properties of an embedded communication system relies on finding

upper bounds on the Worst-Case Response Time (WCRT) of the messages that are exchanged among

the nodes on the network. The classical WCRT analysis of Controller Area Network (CAN) implicitly

assumes that at any given time, each node is able to enter its highest priority ready message into

arbitration. However, in reality, CAN controllers may have some characteristics, such as non-abortable

transmit buffers, which may break this assumption. This paper provides analysis for networks that

contain nodes with non-abortable transmit buffers, as well as nodes that meet the requirements of the

classical analysis. The impact on message WCRTs due to a limited number of transmission buffers

with non-abortable behaviour is examined via two case-studies.

I. INTRODUCTION

Controller Area Network (CAN) was specifically designed for use in the automotive domain and

has become a de-facto standard. Today, high-end cars can contain as many as 70 CAN controllers [1].

CAN has been extensively used in other areas as well, including industrial automation, especially

networked control systems [2], because of its interesting real-time properties and low-cost. Whatever

the domain, existing schedulability analyses of real-time applications distributed over CAN assume

that:

1. If a CAN node has to send out a stream of messages having the highest priority on the bus,

it should be able to do so without releasing the bus between two consecutive messages, despite the

arbitration process that takes place at the end of each transmission.

2. If on a CAN node more than one message is ready to be sent, the highest priority message will

be sent first. This means that the internal organization and message arbitration of the CAN node is

such that this is possible. These assumptions put some constraints on the architecture of the CAN

controllers and on the whole protocol stack. Sometimes, because of the CAN controller or protocol

layers, priority inversion among messages can occur. This can happen when the controller sends more

distinct messages than the number of transmission buffers available and transmission requests (for

low-priority messages) cannot be cancelled. Indeed, some CAN controller hardware implementations

have internal organization such that they send messages independent of CAN message ID (Microchip

MCP2515, Freescale MC68HC912), send messages in a FIFO order (Infineon XC161CS), or do not

have enough transmit buffers (Philips SJA1000). Moreover, the transmit buffers may be managed

without abortion (Philips 82C200) [3], or the support for abort mechanisms may be missing at the

device driver level or, finally, the communication stack may be configured such that it does not support

cancelling transmission (see “transmit cancellation” in an AUTOSAR stack, page 37 in [4]). As a

result, a message can be delayed for a longer time than is expected by classical analyses [5], [6] and

the response time increases accordingly.

II. PREVIOUS WORK

Timing analyses of CAN developed over the years model the network as an infinite priority queue

where each node is inserting its messages according to their priority. It is then assumed that the

highest priority message in the queue wins the arbitration, be it in the deterministic [5], [6], [7] or

stochastic case [8], [9]. However, this model does not hold when hardware and software constraints,

like limited numbers of transmission buffers in the CAN controller and copy-time of messages from

device drivers, are considered then the Worst-Case Response Time (WCRT) increases as compared

to the traditional analyses. To the best of our knowledge, this issue was first identified and analysed

in [10].

Some work has already been carried out to identify and analyse the effects of limited transmission

buffers, in [10], [3], [11] and [12]. In [11], Natale classifies and explains all the cases leading to

priority inversion due to hardware and software limitations, that were not covered by the existing

analyses. In [10] Meschi et al. show that at least three transmission buffers are needed to avoid priority

inversions when the copy-time of a message from the queue to the controller is neglected. However,

analysis in [10] only addresses the case when transmission requests are abortable. In [12], Khan et al.

address the case of priority inversion in an abortable CAN controller when copy-time of messages and

the architecture of a device driver is taken into account. In [13], Davis et al. provide schedulability

analysis when device drivers use FIFO transmission queues. However, the analyses provided in [12],

[13] do not investigate the non-abortable CAN controller case. In [3] Natale provides an analysis for

integrating the increase in WCRT due to priority inversion in non-abortable CAN controllers. However,

the analysis provided in [3] takes into account interference from all lower priority messages when

computing the WCRT of the message which suffers from priority inversion, which may not be the

case as is shown in this paper. Furthermore, it does not consider the fact that the increase in the

WCRT (additional delay) of a message manifests itself as a jitter for lower priority messages.

Contributions of the paper: Here, we address the 3 or more buffer case when it is impossible

to cancel a transmission request and we derive a worst-case response time analysis for it. The case

addressed here is meaningful because in practice most CAN controllers have more than three buffers

and the ability to cancel a transmission request may not be supported by them, the device drivers or

the higher level communication stack. This work provides tighter bounds on the WCRT than derived

in [3] by identifying more precisely the interference brought about by lower priority messages. It

also identifies and integrates the jitter due to this interference in the analysis, which may increase the

response time for some messages.

III. SYSTEM MODEL

We assume a setM of m messages µ1, µ2, . . ., µm, where m ∈ N. Each message µi is characterized

by a period Ti ∈ R+, an activation jitter Ji ∈ R+, a worst-case transmission time Ci ∈ R+, and

a (relative) deadline Di ∈ R+, where Di ≤ Ti. For notational convenience, we assume that the

messages are given in order of decreasing priority, i.e. µ1 has highest priority and µm has the lowest

priority. Moreover, we assume a set C of n CAN controllers CC1, CC2, . . ., CCn, where n ∈ N.

Each CAN controller CCc has a finite number of transmission buffers kc ∈ N.

A total function CC :M→ C defines which message is sent by which CAN controller. The set

of messages Mc sent by controller CCc is defined as

Mc = {µ ∈M|CC(µ) = CCc}. (1)

Similarly, Mc defines the set of messages not sent by CCc, i.e.

Mc = {µ ∈M|CC(µ) 6= CCc} =M\Mc. (2)

Let Hc be the set of highest priority messages in Mc excluding the kc lowest priority messages.

Similarly, let HEc be the set of highest priority messages in Mc excluding the kc− 1 lowest priority

messages. We use µLc
to denote the lowest priority message in message set HEc, where Lc is

its priority. Furthermore, we assume that multiple transmission buffers on CAN controllers are not

occupied by messages with the same priority. The assumption is made that nodes can always fill

empty buffers with ready messages in time for the next bus arbitration.

The WCRT Ri of a message is defined as the maximum possible time taken by a message to

reach the destination CAN controller, starting from the time of an initiating event responded to by

the sending task. A message µi is said to be schedulable if and only if its WCRT Ri is less than

or equal to the message relative deadline Di and the system is schedulable if and only if all of the

messages are schedulable.

Pr
io

ri
ty

Time

CCl

CCl

CCm

µi

µj

µk

0 5 10

B

Figure 1. The message µi suffers a priority inversion as, being the highest priority message, it should have been transmitted

earlier than µk and µj sent by nodes CCm and CCl respectively. This was not possible because here the transmission

request for µj cannot be aborted on CCl and all buffers were full. This results in an additional delay for message µiand

thus increased WCRT as compared to existing analyses. The arrows indicate the message release times.

Definition 1. [Priority inversion] A message µi on a CAN controller CCl without abort mechanism

is said to suffer from priority inversion when µi is released, if all of the kl transmission buffers are

occupied by the messages with lower priority than that of µi.

Remark 1. [Limited number of buffers] For any CAN controller CCl with kl transmission buffers the

kl lowest priority messages in the message set Ml will not suffer any priority inversion. As a corollary,

for any CAN controller CCl with kl transmission buffers, if the number of messages mapped onto it

is less than or equal to kl then no message on CCl can suffer from priority inversion.

IV. ADDITIONAL DELAY

Figure 1 illustrates the case in which a message µi sent by CAN controller CCl should have been

transmitted after B, the blocking time of a lower priority message. Here the message µj blocks µi

due to the non-availability of a transmission buffer in CCl, which only becomes available after µj

finishes its transmission. However, the message µj has to wait for the higher priority message µk on

CAN controller CCm to be transmitted before it can begin its transmission. Therefore, the WCRT for

µi given by the existing analyses increases by an amount, called the Additional Delay (AD), which

in this example is equivalent to the sum of the worst-case transmission times of µk and µj .

Let µi be a high priority message in Mc and let the number of messages in Mc with a lower priority

than i be at least kc. Moreover, let µj be the highest priority message in the CCc transmission buffers,

such that j > i (i.e. j is of lower priority than i). When all the transmission buffers of CCc are full,

the longest delay for µi occurs when none of the messages in the transmission buffers of CCc are

currently being transmitted and µi has to wait until µj has been transmitted for the release of a buffer

on CCc. Moreover, µi also experiences the normal interference from higher priority messages sent

by CAN controllers other than CCc.

Algorithm 1 Algorithm for finding additional delay and additional jitter. The inputs to the algorithm

are the number of CAN controllers (c), the number of transmission buffers on each CAN controller

c (kc), and the set of all messages on the CAN network (M). The algorithm returns the additional

delay and additional jitter for all messages.
Input: c, k = {kl|l = 1 . . . c}, M

Output: AD = {ADi|i = 1 . . . size(M)}, Ĵ = {Ĵi|i = 1 . . . size(M)}

AD = 0 //initialization of AD for all messages

Ĵ = J //initialization of AJ for all messages

for each CCl| l ∈ {1, 2 . . . , c}

K = size(Ml) //size(Ml) returns # of messages in Ml

Hl = {∀µi ∈M |CC(µi) == l ∧ i ≤ K − kl} //set of messages with AD

if K ≤ kl //more buffers available than the # of messages

AD = 0

else

HEl = {∀µi ∈M |CC(µi) == l ∧ i ≤ K − kl + 1} //message set Hl including µLl

compute R∗j∀µj ∈ HEl //using equations (3 & 5)

∀µi ∈< Hl find ADi //using equation (6)

∀µi ∈< Hl find Ĵi = Ji +AJi //using equations (7 & 8)

end

end

return(AD and Ĵ)

Before transmission (i.e. when µj is in the CAN controller transmission buffer blocking µi), µj

can be directly blocked by at most one message µlj with lj > j sent by another CAN controller,

or alternatively, subject to indirect or push-through blocking due to at most one message µlj with

lj > j sent by the same CAN controller. Similarly, µj can experience interference from higher priority

messages µhj
with hj < j. Message µj cannot experience direct interference from higher priority

messages µhj
with hj < j on controller CCc, because µj is the highest priority message in the

transmission buffers of CCc and µj cannot be aborted. However, such messages could if transmitted

prior to the time at which µj fills the buffer, cause indirect interference by delaying the transmission

of higher priority messages sent by other nodes, which then increases the time taken for message

µj to be sent. To account for this indirect interference, we first include messages µhj
with hj < j

on controller CCc in the fixed point calculation of the queuing delay, so that the correct amount of

interference is obtained for messages from other nodes. Later, when computing the additional jitter,

we subtract out the interference from the messages sent by controller CCc as these transmissions

cannot occur after µj fills the transmission buffer.

The time duration for which µi has to wait depends on the response time of µj , called the modified

response time1 and denoted by R∗j for µj and computed as follows

ŵn+1
j = max(Bj , Cj) +

∑
∀µk∈M∧k<j

⌈
Ĵk + ŵnj + τbit

Tk

⌉
Ck (3)

where Bj is the maximum blocking time of message µj given by:

Bj = max{0,max{Ck|k > i}}. (4)

Where Ĵk is the jitter2 of higher priority messages computed using equation (7) by algorithm 1. A

suitable starting value for the recurrence relation given in equation (3) is ŵ0
j = B̄j . This relation keeps

on iterating until ŵn+1
j = ŵnj or ŵn+1

j + Cj > Dj , which is the case when µj is not schedulable.

The modified WCRT of µj is given by:

R∗j = ŵj + Cj (5)

There are some aspects that need to be taken into account in order to determine the additional delay

experienced by µi, due to the non-availability of a transmission buffer. First, the jitter Jj of µj should

not be accounted for in the modified WCRT R∗j of µj , because that is irrelevant for the delay of µi

as µj is already in the transmission buffer.

Second, because the interference of messages µhi
with 1 ≤ hi < i will re-appear when we compute

the worst-case response time of µi, we have to subtract this interference from R∗j , in order to prevent

the double inclusion of interference from the messages µhi
with 1 ≤ hi < i sent by other CAN

controllers (i.e. M̄c).

The additional delay ADi of µi, due non-availability of transmission buffer, is therefore found by

subtracting the interference of the messages µhi
with 1 ≤ hi < i and µhk

with 1 ≤ hk < j contained

1The modified response time of message µj is not its actual response time because the message jitter is missing.
2To begin with Ĵk = Jk for all messages, in order to find the first value of ADi. After computing ADi, it will appear

as jitter to all messages {µk|k > i} necessitating recalculation of ADi, which is done iteratively until it does not change

any more or a message becomes unschedulable, found using algorithm 1.

Time

r1 a1

P
ri
or
it
y

µ3

µ4

µ5µ5

µ4

µ3

µ2 µ2

µ1µ1

0 1 2 3 4 5 6 7 8 9 10

Figure 2. Example of how the WCRT of a lower priority message µ5 is affected by the additional jitter caused by priority

inversion that is suffered by a higher priority message µ1.

in R∗j , i.e.

ADi = max
∀k>i∧µk∈HEc

(R∗k −
∑

1≤hi<i∧µhi
∈M̄c

⌈
R∗k − Ck + Ĵhi

+ τbit

Thi

⌉
Chi

−
∑

1≤hk<k∧µhk
∈Mc

⌈
R∗k − Ck + Ĵhk

+ τbit

Thk

⌉
Chk

) (6)

The reason for taking max in equation (6) is that the additional delay for the message µi can be due

to each message µk ∈ HEc where i < k ≤ Lc, and it may be different due to each of these messages.

Moreover, for all messages µk, such that i < k ≤ Lc , having similar higher priority interference

to that of µLc
(i.e. R∗k − Ck is equal to R∗Lc

− CLc
) the worst-case ADi is obtained by taking into

account the message µk with the largest worst-case transmission time (i.e. Ck > CLc
), as µk will

give more additional delay than µLc
. Thus taking the maximum over all messages which could block

µi enables us to find the message µk with i < k ≤ Lc which gives the worst-case additional delay to

µi. The algorithm to find the additional delay is described in algorithm 1. The algorithm will keep on

iterating until AD converges or it is greater than the deadline, i.e. WCRT of the message becomes

greater than its deadline (in which case the message set is not schedulable).

ri

Ji

aQi ai

AJi

Figure 3. The time line of message µi from its initiating event until it is able to participate in bus arbitration.

V. ADDITIONAL JITTER

The release jitter (Ji) is defined traditionally as the time interval between the occurrence of an

event that will trigger sending of the message (ri) and placing the message in a transmission queue

(Q) or a transmission buffer. However, with non-abortable transmit buffers, priority inversion occurs,

and the message µi triggered by the event at ri is not able to participate in arbitration until the time

ai, as it may be blocked by messages with lower priority than i. Therefore, the messages on other

nodes see the interference of µi after time ai and the jitter of this message is not limited to Ji.

Instead, the total jitter seen for µi, by the messages with lower priority than i, is given by:

Ĵi = Ji +AJi (7)

where AJi is the time µi has to wait for the buffer to be emptied, see figure 3. Where AJi is computed

as:

AJi = max
∀k>i∧µk∈HEc

(R∗k −
∑

1≤hk<k∧µhk
∈Mc

⌈
R∗k − Ck + Ĵhk

+ τbit

Thk

⌉
Chk

) (8)

where R∗k is found using equation (5). Note that interference from higher priority messages sent by

the same node is subtracted out, as this interference cannot occur after message µk has filled the

transmit buffer. The above equation upper bounds the amount of time that a message µk can spend

in a transmit buffer, with all other buffers filled by lower priority messages; hence it upper bounds

the additional delay caused by message µk on message µi .

Table I

CHARACTERISTICS OF MESSAGES.

Frames CAN controller T J C

µ1 CC1 5C 0 C

µ2 CC2 6C 0 C

µ3 CC2 6C 0 C

µ4 CC2 6C 0 C

µ5 CC1 4C 0 C

Example 1. Consider a system of two CAN controllers CC1 and CC2 with 5 messages, as described

in table I. Let CC1 have a single transmission buffer and let CC2 have an unlimited number of

transmission buffers. Assume that µ5 is in the buffer of CC1 and µ1 is released along with all other

messages at time t = 0, see figure 2. Since CC1 has a single buffer, µ1 is blocked until µ5 releases

the buffer at time t = 4. The messages with lower priority than that of µ1 on CC2 are not aware

of release at t = 0 of µ1, as they do not see it participating in arbitration from t = 0 to a1 when it

occupies the buffer in CC1. Once µ1 is in the buffer it is able to participate in arbitration at time

t = 4 and wins. The release of the second instance of message µ5 suffers interference from two

instances of message µ1, between time t = 4 and t = 6. The inter-arrival time expected for µ1 was

5C, however, because µ1 suffered an additional delay of 4C due to priority inversion, the interval

between two instances of message µ1 being sent on the bus is reduced to 1C. The additional delay

suffered by µ1 is seen as a jitter of 4C by µ5. The WCRT of µ5 given by existing analyses is 5C,

but if we include the jitter of 4C for µ1 we obtain the WCRT of 6C for µ5 as seen in figure 2.

VI. RESPONSE TIME ANALYSIS

This section provides a method for computing the worst-case response time of messages on the

CAN network. The computed values are then used to check the schedulability of the system by

comparing the WCRTs against the message deadlines. The analysis given in this paper provides a

simple and non-necessary schedulability condition directly inspired by [6]. It assumes no errors on

the bus but they can be included as done in [5]. Following the analyses given in [5], [6] the worst-case

response time can be described as a composition of three elements:

1) the queuing jitter Ji, is the maximum time between the sending task being released and a

message being queued.

2) the queuing delay wi, is the longest time for which a message can remain in the device driver

queue or transmission buffers before successful transmission,

3) the worst-case transmission time Ci, is the longest time a message can take to be transmitted.

A bound on the worst-case response time of a message µi is therefore given by:

Ri = Ji + wi + Ci (9)

When computing a bound on the response time, we can distinguish three cases i) messages which

are safe from priority inversion ii) messages which suffer from priority inversion due to non-abortion

of the messages in transmission buffers and iii) messages which suffer from priority inversion due

to copy-time and message swapping issues. In this paper, we cover case (i) and case (ii), while the

third case has already been analysed in [12].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

Frame ID

W
C

R
T

(m
s)

WCRT analysis with priority inversion (Di Natale)

using WCRT analysis of this paper

WCRT analysis without priority inversion

Figure 4. This figure shows the WCRT of messages from SAE benchmark computed using analysis which does not account

for priority inversion, analysis in [3] and the analysis developed in this paper. Our analysis assumes each CAN controller

has 3 transmission buffers. Some of the messages have lower WCRT with Di Natale’s analysis (for example IDs 13, 15

and 17) because the equation used in [3] to compute the WCET is slightly different.

The queuing delay wiis composed of:

1) blocking delay3 B̂i, is either the delay Bi due to the non-preemptivity of lower priority messages

in transmission when µi was ready for arbitration or the additional delay ADi, computed using

equation (6), due to the priority inversion i.e.

B̂i = max(max(Bi, Ci), ADi) (10)

2) the delay due to interference of higher priority messages which may win arbitration and be

transmitted before µi.

A. Case 1: safe from any priority inversion

We note that the higher priority messages on each CAN controller CCl are more susceptible to

priority inversion than lower priority messages on the same CAN controller. Indeed, the kl lowest

priority messages on CCl will not suffer from any priority inversion as not all of the transmission

buffers can be occupied by messages with lower priority than any of these kl messages, thus these

messages are not suffering from any additional delay. However, these messages are still affected by

3The additional delay ADi of a message µi appears as an additional blocking delay due to messages with lower priority

than that of µi.

the additional delay of higher priority messages, as it is seen by them as additional jitter. For these

messages or the CAN controllers which support abort mechanisms, the worst-case queuing delay,

using the model in [6], is given by:

wn+1
i = max(Bi, Ci) +

∑
∀k<i∧µk∈M

⌈
Ĵk + wni + τbit

Tk

⌉
Ck (11)

where Ĵk is computed using (7) and Bi is the maximum blocking time due to lower priority messages

which occurs when a lower priority message of the largest size has just started to be transmitted when

µi arrives, i.e.

Bi = max
∀k>i∧µk∈M

{Ck} (12)

A suitable starting value for the recurrence relation given above is w0
i = Ci. This relation keeps on

iterating until wn+1
i = wni or Ji + wn+1

i + Ci > Di, which is the case when the message is not

schedulable. If the message is schedulable its WCRT is given by (9).

We observe that the existing priority assignment algorithms, see [14], may not be optimal in this

case as they require that the relative order among the higher priority messages does not matter while

checking the schedulability of lower priority messages. However, such a condition is not satisfied,

for the scenario discussed in this paper, as the order among the higher priority messages may impact

their additional delay, i.e. the jitter Ĵ seen by lower priority messages, thus having an impact on the

response time of lower priority messages.

B. Case 2: not safe from priority inversion

Once we have the additional delay of message µi, susceptible to priority inversion, we can compute

its WCRT. The worst-case queuing delay for message µi is given by:

wn+1
i = B̂i +

∑
∀k<i∧µk∈M

⌈
Ĵk + wni + τbit

Tk

⌉
Ck (13)

where Ĵk is computed using (7) and B̂i is computed using (10). A suitable starting value for the

recurrence relation given above is w0
i = Ci +ADi. This relation keeps on iterating until wn+1

i = wni

or Ji + wn+1
i + Ci > Di, which is the case when the message is not schedulable. If the message is

schedulable its WCRT is given by (9).

However, as we established in section V the computed additional jitter for µi now impacts all the

messages with lower priority than i and therefore we have to re-compute the WCRT4 for all lower

4It is important to note that the additional delays effectively increase the jitter of affected messages, and this then leads to

higher interference and a larger computed response time. However, in practice, the messages cannot obtain their maximum

jitter (additional delays) all at the same time and therefore the analysis can be pessimistic. An improvement to the analysis

is to upper bound the WCRT by the longest busy period at the lowest priority level, since no response time can be larger

than that with any non-idling policy.

Algorithm 2 Algorithm for finding WCRT. The inputs to the algorithm are the number of CAN

controllers (c), the number of transmission buffers on each CAN controller c (i.e. kc), and the set of

all messages on the CAN network (M). The algorithm returns the WCRT of message set.
Input: c, k = {kl|l = 1 . . . c}, M

Output: WCRT of message set M

AD, ADold = 0 // initialization of AD for all messages

ADnew = C

Ĵ = J // initialization of jitter for all messages

while(ADnewnot equal to ADold)

ADold = ADnew

Compute Ĵ , ADnew via algorithm 1

if(ADnew is greater than deadlines)

return(unschedulable)

end

end

AD = ADnew

if(J + wn+1 + C ≤ D) //for case 1 and case 2 using equations (9, 11 & 13)

return(J + wn+1 + C)

else

return(unschedulable)

end

priority messages as well.

The process used to re-compute WCRT for the messages remains the same as described in sec-

tions VI-A and VI-B. A simple procedure is used to find the WCRT by computing additional delay

first (for all messages susceptible to priority inversion) and then computing the WCRT for all of the

messages, as shown in algorithm 2.

Example 2. In section V we showed, with the aid of an example, how the additional delay of a

message manifests itself as a jitter for lower priority messages and how existing analyses fail to

integrate the same. We return to the same example to illustrate how the analysis developed in this

paper integrates the additional delay and the additional jitter. The message µ1 is blocked by µ5 and

therefore the additional delay for µ1 calculated using equation (6) is 4C. The WCRT for µ1 computed

by equation (13) is 5C. Similarly, the WCRT of message µ5 when computed using equation (11) (by

accounting for the additional jitter of message µ1) is 6C, which can be verified from figure 2.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Frame ID

W
C

R
T

(m
se

c)

16 buffers

without buffer constraints

20 buffers

12 buffers

Figure 5. WCRT on a typical 125 kbits/s automotive body network (assuming each CAN controller has 12, 16 and 20

transmission buffers and cancellation of transmit request is not possible) computed using analysis which does not account

for priority inversion (lower curve) and analysis developed in this paper.

VII. COMPARATIVE EVALUATION

The analysis developed in this paper is compared against the existing analyses which do not account

for priority inversion, and the analysis developed in [3] which accounts for priority inversion. The

case-study in this paper assumes 3 or more transmission buffers on each CAN controller, with non-

abortable transmission requests.

A. SAE benchmark

The evaluation of the analysis developed in this paper is done by comparing against SAE benchmark

results published in [3] and in [15]. The SAE benchmark, see [15], [3] for details, describes a message

set mapped on to seven different CAN controllers in a prototype car and the requirements for the

schedulability of the messages. The network connecting the car subsystems handles 53 periodic and

sporadic real-time signals. The signals have been grouped and the entire set has been reduced to 17

messages (for details, refer to [15]). To analyse the schedulability of the message set at 250 kbps we

compute the worst-case transmission time for this bus-speed, which for consistency is computed as in

[3]. The results of the comparative WCRT analyses have been depicted in figure 4. The message set

is schedulable with the analysis given in [3] and with the analysis provided in this paper. However,

a significant difference in the response time computed by the analysis in this paper and the analysis

in [3] can be observed in figure 4. The reason for such a difference is that the analysis in [3] does not

consider the number of transmission buffers and computes the additional delay of the messages using

the lowest priority message from the message set mapped onto that CAN controller, thus resulting

in a pessimistic WCRT. Moreover, it has been established in [12] and this paper that the number of

transmission buffers does have an effect on the WCRT. Applying the criteria developed for priority

inversion in this paper we find only one message in the benchmark may suffer from priority inversion

(ID = 1), since there is only one CAN controller that has more than three messages mapped to it (see

message mapping details in [3]). Thus, the WCRT only increases for the message with ID = 1 as the

rest of the messages are safe from priority inversion and they only take into account the additional

jitter of the message with ID = 1. The worst-case for message ID = 1 is when the transmission

buffers are filled with messages of ID = 8, 12, 15. The first message to transmit from the buffers is

then ID = 8, which contributes towards the worst-case additional delay for message ID = 1, as in

the worst-case it may have to wait for higher priority messages from other CAN controllers to be

transmitted first (i.e. ID = 2, 3, 4, 5, 6, 7 contribute additional delay, computed using equation (6)).

B. Automotive body network

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

CAN controller ID

N
um

be
r

of
 m

es
sa

ge
s

Number of messages mapped
Number of CAN controller buffers

Figure 6. Figure showing number of messages mapped onto each CAN controller. The CAN controllers with more messages

than the number of transmission buffers are susceptible to priority inversion.

The limitation of the SAE benchmark is that it is outdated with respect to current in-vehicle

systems. Moreover, the SAE benchmark has only one node with more than 3 messages mapped onto

it, thus making it difficult to compare the analyses. Therefore, we illustrate the new analysis on

an typical 125Kbit/s automotive body network. To generate a realistic test configuration we used the

Netcarbench [16] benchmark generator. The generated periodic message set under study consists of 79

CAN messages mapped over 17 ECUs with deadlines equal to periods and data payload ranging from

1 to 8 bytes. The total periodic load is equal to 64.26%. Figure 6 shows the message load distribution

over the ECUs highlighting the ECUs with more than three messages susceptible to priority inversion,

in the case where each node has three buffers. Figure 5 shows the worst-case response time of the

CAN messages with and without priority inversion. We observe the impact on the WCRT of messages

when priority inversion is taken into account. For instance, the message set is unschedulable when

3 transmission buffers per node is considered. Moreover, in figure 5, the WCRT for the message

with ID=32 when considering 12 transmission buffers raises from 30.64ms without priority inversion

to 66.29ms. The underlying reason for such an increase in the WCRT is the additional delay of

19.46ms encountered by frame ID=32. This is because the frame which is blocking message ID=32

in the worst-case scenario has ID=69 and the number of frames on other ECUs having ID between

ID=69 and ID=32 is 27. Therefore, in the worst-case additional delay scenario, 27 messages may be

transmitted before message ID=69 could be transmitted and then subsequently release the buffer for

message ID=32.

We also note that the choice of priorities greatly influences the amount of additional delay. For

example, if the priorities were such that the message blocking the message with ID=32 in worst-case

had ID=44, then the number of messages on other ECUs blocking message ID=32 would have been

reduced to 10 from 27, resulting in a smaller additional delay.

VIII. CONCLUSION

The paper provides an analytical model of schedulability analysis for CAN controllers when the

transmission requests cannot be aborted. The model developed in this paper provides understanding

of the consequences of architectural limitations in CAN. Here, we derive a more realistic response

time analysis in the typical case where controllers have three or more transmission buffers and

do not possess the ability to cancel transmission requests. This analysis is of particular interest to

automotive sector where multiple Tier 1 suppliers provide ready-to-use ECUs in an automobile. The

lack of knowledge at system design level about the limitations of the CAN controller used or device

driver provided by tier 1 suppliers can have serious consequences. A first follow-up to this paper is to

come up with an analysis valid in the arbitrary deadline case. Another direct follow-up to this study

is to investigate the case where, due to a larger message copy time, the nodes are not always able to

fill empty buffers with ready messages in time for the next arbitration. The choice of the priorities

has a direct effect on the additional delay due to requests that cannot be aborted. Therefore, in a

future work, we aim to develop a priority assignment algorithm based on the schedulability test in

this paper, which could reduce the amount of additional delay in the case where a message suffers

from priority inversion. Also, we will study the choice of offsets on ECUs so that messages are not

released at the same moment, reducing priority inversion in the CAN controller.

ACKNOWLEDGMENTS

The authors would like to thank Reinder J. Bril (Eindhoven University of Technology) for the

useful discussions on an earlier version of this paper.

REFERENCES

[1] N. Navet, Y.-Q. Song, F. Simonot Lion, and C. Wilwert, “Trends in Automotive Communication Systems,” Proceedings

of the IEEE, vol. 93, pp. 1204–1223, Jun 2005.

[2] P. Marti and, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid, “Runtime Allocation of Optional Control Jobs to

a Set of CAN-Based Networked Control Systems,” IEEE Transactions on Industrial Informatics, vol. 6, pp. 503–520,

November 2010.

[3] M. D. Natale, “Evaluating message transmission times in Controller Area Networks without buffer preemption,” in

8th Brazilian Workshop on Real-Time Systems, 2006.

[4] AUTOSAR, “Specification of CAN driver.” Autosar Release 4.0 Rev1. Available at http://www.autosar.org, 2009.

[5] K. Tindell, A. Burns, and A. Wellings, “Calculating Controller Area Network (CAN) message response times,” Control

Engineering Practice, vol. 3, no. 8, pp. 1163 – 1169, 1995.

[6] R. Davis, A. Burn, R. Bril, and J. Lukkien, “Controller Area Network (CAN) schedulability analysis: Refuted, revisited

and revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.

[7] M. Grenier and N. Navet, “Fine-tuning MAC-level protocols for optimized real-time QoS,” IEEE Transactions on

Industrial Informatics, vol. 4, pp. 6 –15, February 2008.

[8] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli, “Using Statistical Methods to Compute the

Probability Distribution of Message Response Time in Controller Area Network,” IEEE Transactions on Industrial

Informatics, vol. 6, pp. 678 –691, November 2010.

[9] H. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat, “Integrating Reliability and Timing Analysis of CAN-Based

Systems,” IEEE Transactions on Industrial Electronics, vol. 49, pp. 1240–1250, Dec. 2002.

[10] A. Meschi, M. D. Natale, and M. Spuri, “Priority inversion at the network adapter when scheduling messages with

earliest deadline techniques,” in 8th Euromicro Workshop on Real-Time Systems, pp. 243–248, June 1996.

[11] M. D. Natale, “Understanding and using the Controller Area Network.” Handout of a lecture at U.C. Berkeley available

at http://inst.eecs.berkeley.edu/~ee249/fa08/, October 2008.

[12] D. A. Khan, R. J. Bril, and N. Navet, “Integrating hardware limitations in CAN schedulability analysis,” in Wip paper

at the 8th IEEE International Workshop on Factory Communication Systems (WFCS 2010), pp. 207–210, May 2010.

[13] R. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area Network (CAN) schedulability Analysis with FIFO

queues,” in 23rd Euromicro Conference on Real-Time Systems (ECRTS), pp. 45–56, 5-8th July 2011.

[14] R. Davis and A. Burns, “Improved priority assignment for global fixed priority pre-emptive scheduling in multiprocessor

real-time systems,” Real-Time Systems, vol. 47, pp. 1–40, 2011.

[15] K. Tindell and A. Burns, “Guaranteeing message latencies on Controller Area Network (CAN),” in Proceedings of

1st international CAN conference, pp. 1–11, 1994.

[16] C. Braun, L. Havet, and N. Navet, “NETCARBENCH: a benchmark for techniques and tools used in the design of

automotive communication systems,” in 7th IFAC International Conference on Fieldbuses and Networks in Industrial

and Embedded Systems, pp. 321–328, 2007. Available at http://www.netcarbench.org.

