

Application under study Asynchronism tasks / communication cycle 356 signals sent by 14 ECU Signal sizes range from 1 to 64 bits Production period: 10ms to 1s Useful load: 60kbit/s 2 ECU transmit only aperiodic signals All aperiodic signals sent in the dynamic segment Transmission period for aperiodic signals: 320ms

RTaW

- No 2.5ms frames
- Max. signal response time: 110% period

Results obtained with NETCAR-FlexConf: static segment ECU Slot BaseCvcle Pavload (bits) Repetition #signaux 33 ECU1 ECU1 128 31 126 31 22 4 ECU1 ECU2 $90 \\ 47$ $\frac{31}{72}$ 16 6 9 1 Observations: $\begin{array}{c} 126 \\ 128 \end{array}$ ECU3 78 78 78 30 30 8 $51 \\ 11$ ECU3 ECU3 64 24Set of 3 64 2 a) 12 slots -> ECU4 ECU4 128 121 $\frac{2}{4}$ 24 29 FlexRay 2 minimum possible 16 56 115 ECU4 ECU5 $^{64}_{1}$ $1 \\ 10$ frames 30 73 29 29 74 71 77 77 75 70 28 2 12 2 b) Configuration ECU6 ECU6 ECU7 48 114 64 16 algorithm efficient ECU8 ECU9 52 117 16 32 8 20 ECU9 32 64 1 ECU10 ECU11 96 8 87 $14 \\ 1$ 8 16 ECU14 76 17 Dynamic segment: one slot used Free slots left: 40 DYN vs 90 ST = 30/70% as requested RTaW

Useful load (signals)	FlexRay	2.5 Mbit/s	FlexRay	v 10Mbit	s 1x CAN 500Kbit/s	
Load 1x (≈ 60 kbit/s)	free slots		free slots		network load 31%	
	ST	23	ST	100	R without offsets 15.3	
	DYN	9	DYN	43	R with offsets 7.8	
Load 2x (≈ 120 kbit/s)		free slots		free slots	network load 57%	
	ST	21	ST	98	R without offsets 49.6	
	DYN	9	DYN	43	R with offsets 14.9	
Load 3x (≈ 180 kbit/s)		free slots		free slots	network load 85%	
	ST	19	ST	96	R without offsets 148.5	
	DYN	7	DYN	41	R with offsets 79.7	
Load 4x (≈ 240 kbit/s)		free slots		free slots		
	ST	19	ST	96	non-schedulable	
	DYN	7	DYN	40	2x CAN 500 OK	
Load 5x (≈ 300 kbit/s)		free slots		free slots	non-schedulable	
	ST	15	ST	92	2x CAN 500	
	DYN	6	DYN	40	depending on the overlap	
Load 10x (≈ 600 kbit/s)		free slots		free slots		
	ST	3	ST	84	non-schedulable with two CAN buses	
	DYN	0	DYN	36		

