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Scheduling frames with offsets has been shown in the literature to be very beneficial
for reducing response times in real-time networks because it allows the workload to
be  better  spread  over  time  reducing  thus  peaks  of  load.  Maintaining  a  global
synchronization amongst the stations induces substantial overhead and complexity in
networks not providing a global time service such as CAN. Indeed, on CAN, a global
clock  is  rarely  implemented in  practice  and each station  possesses  its  own local
clock. Without a global clock, the de-synchronization between the streams of frames
created by offsets remains local to each station and thus less efficient. In a previous
paper  [1],  we  developed  a  method  to  compute  latency  upper  bounds  for  set  of
messages  with  offsets  when  the  inter-node  synchronization  is  not  perfect.  On  a
simplified  test  case,  we obtained  a  reduction  of  65%  of  the  delay  using  a  clock
accuracy of only 1ms. In this article, we extend the method to consider a realistic case
study (mixing periodic and asynchronous flows, considering errors and tacking into
account the synchronization protocol).

1. Introduction

1.1 Context 
Controller Area Network (CAN) is a serial
communication  bus  network  that  was
initially  developed  for  automotive
applications  in  the  mid  90s.  Due  to  the
many  advantages  of  CAN,  including  its
high  reliability  and  cost  effectiveness,  it
has  found application  in  other  industries.
Real-time  distributed  applications
increasingly use CAN for transmitting real-
time information. These applications often
require  to  respect  temporal  constraints
and  so  to  bound  the  communication
latencies  of  the  frames,  also  called  the
worst case response times (WCRT). 

It is well known (e.g., see [9]) that the use
of  offsets  reduces  frame response  times
and increases the possible bus utilization
level. Indeed, offsets allow the workload to

be  better  balanced  over  time  which
reduces   contention  for  the  bus  access
and,  as  a  result,  decrease  the  frame
response  times  and   allow  a  better
bandwidth  utilization.  However
implementing offsets  requires  a clock.  In
distributed  systems  there  are  two  main
solutions: all nodes share a global clock or
each node has its own local clock. In both
cases, each message is sent at an certain
offset  with  regard  to  a  clock.  

1.2 Weak  Synchronization 
In case of global clock all nodes have (up
to  a  certain  precision)  the  same  clock
value,  and with  the proper  time-triggered

frame  schedule  no  contentions  occur,
neither between the flows from the same
node,  nor  from different  nodes.  However
global  clock  requires  synchronization
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Figure 1: Schedule example with a global clock
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mechanisms, and the clock precision must
be much smaller than the sending time of
one frame such that there is no contention.
An example of such a schedule is given in
Figure 1. A time slot is dedicated to each
message,  and  no  contention  occurs
between the flows A, B, C. 

In  case  of  local  clocks,  the  scheduling
remains  local.  Using  local  clocks  avoids
the  contentions  between  flows  from  the
same node,  and  reduces the contentions
between flows from different  nodes.  Two
example schedules are given in  Figure 2.
Contentions between flows A and B from
node  1  cannot  happen.  However
contentions  between  flows  from  different
nodes  can  happen:  between  A  and  C
(upper case) and between B and C (lower
case).  Nevertheless,  offsets  with  local
clocks  create  some  traffic  shaping  and
reduce contentions between nodes: C can
be delayed by at most A or B but  never
both of them. 

We  introduce  the  notion  of  bounded
phases as a trade-off between global clock

and local  clocks:  a  system with  a global
clock but a weak precision, that can also
be  seen  as  a  system  with  local  clocks,
where the phases between the clocks are
bounded.  The  phases  between  nodes  is
not  perfectly  known  but  bounded,  and
some  contentions  can  be  avoided.  An
example  schedule  is  shown  in  Figure  3.
Like  in  the  case  of  local  clocks,  no
contention will  occur between the flows A
and B.  But  if  the  phase (x)  between  N1
and N2 is small enough, no contention can
occur between flows B and C. This shows
that it is possible to benefit from some of
the  advantages  of  a  global  clock  with
fewer  constraints  on  the  synchronization
between nodes. 

1.3 Contribution 
We have shown in [1] that important gains
with  respect  to  the  communication
latencies can be achieved if we implement
bounded clock de-synchronization. For the
sake  of  understanding,  some
simplifications were done in [1]: 

• the  traffic  associated  to  the
synchronization  mechanism  had
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Figure 2: Schedule examples with local clocks

Figure 3: Schedule example with bounded phases
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not been considered,
• no  event-triggered  traffic  was

considered,
• only standard CAN  2.0A was

considered,
• transmission errors were not taken

into account.
In  this  article,  we  propose  to  show  an
acceptable  synchronization  mechanism,
how this method can be used in a context
mixing  asynchronous  flows  and  periodic
flows with offsets, how to take into account
CAN  FD  traffic  and  how  errors  can  be
considered. 

2.  Computing  an  upper  bound  with
network calculus

Network  calculus  is  a  theory  to  derive
deterministic  upper  bounds  on  the
communication  latencies  in  networks.  In
[6] it  has been shown that  application  of
Network  Calculus  can  bound  the  worst
case  response  times  for  CAN  bus.  In
network calculus, input and output flows of
data are modeled by cumulative functions
which  represent  the  amount  of  data
produced  by  the  flow  up  to  time  t.  The
servers  are  just  relations  between  some
input and output flows, a server S receives
an arrival/input flow, A(t), and delivers the
data  after  some  delay,  it  is  the
departure/output  flow,  D(t).  We  always
have the relation D ≤ A, meaning that data
can only go out after their arrival.
However the exact input/output data flows
are in general unknown at design time, or
too  complex,  and  the  calculus  of  these
cumulative  functions  cannot  be obtained.
Nevertheless, the evolution of input/output
data flows can be determined considering
contracts on the traffics and the services in
the  network.  For  this  purpose,  Network
Calculus  provides  the concepts of  arrival
curve and service curve,  that  have been

more widely described in [5]. 

Definition 1 (Arrival curve): Let A be a flow,
and α be a non decreasing function. Then,
α is an arrival curve for flow A, iff :

∀(t, d) ∈ ℝ2 , A(t + d) − A(t) ≤ α(d)

Definition  2  (Service  curve):  A  server  S
offers  a  strict  service  β  iff  for  all
input/output  A,D  and  for  all  busy  period
(s,t] 

D(t) − D(s) ≥ β(t − s) 

Knowing the arrival and the service curve
for  a  flow and  a  server  it  is  possible  to
deduce  a  bound  for  the  worst  case
traversal  time.  More  details  on  network
calculus can be found in  [5] and for  this
specific case in [1].

04-3

Figure 4: Example of scheduling using Major and Minor Time Frame
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3. Contribution
3.1 Synchronization protocol

Several  synchronization  protocols  have
been  proposed,  but  their  implementation
on COTS components can be costly, and
the  use  of  dedicated  hardware  is  not
always  possible.   The  one  presented  in
this  section  describes  an  acceptable
method.  This  method  is  based  on  a
minor/major  time  frame  (MIF/MAF)
concept  where  all  the  nodes  share  the
same minor/major time frame period, see
Figure  4.  At  the end of  each Major  time
frame  an  idle  time  of  variable  duration
exists.  Due  to  hardware  and  software
latency, it may be hard to start all MAF at
exactly  the  same  time,  but  it  could  be
possible  to  have  a  bounded  phase
between them.
The  synchronization  protocols  that  we
envisage is based on a master that sends
a frame at the beginning of the each Major
Time Frame Cycle. This message is then
used by each node on the bus in order to
define a reference point for their own local
clock.  This  message  has  to  be sent  not
only  at  the  beginning  of  the
synchronization  but  at  every  new  Major
Time Frame because of  the  local  clocks
drifting apart.
However  even  if  every  node  uses  the
same message to define the origin of their
clocks it does not guarantee that they will
be  perfectly  synchronized.  A  message
transmission delay can be broken into four
parts:  a  preprocessing  time  (Tpre),  a
waiting  time  (Twait),  a  transmission  time
(Tx)  and  a  postprocessing  time  (Tpost),
see  Figure 5. And these times may vary
for  the  same  message  considering
different destination nodes.

The  preprocessing  time  is  the  time
required  to  acquire  data  from  the

environment  and  encode  them  into
network data whereas the postprocessing
time  is  the  time  required  to  decode  the
network  data  and  transmit  them  to  the
environment. These times are unknown at
design and depend on the device software
and  hardware  characteristics,  however
they can be bounded. In this study we use
results presented in  [2] and consider that
0.5 ms < Tpre + Tpost < 1 ms. The waiting
time is the time spent in the queue at the
sender buffer. Even if we consider that our
synchronization  messages  have  the
highest  priority,  CAN  bus  use  a  non-
preemptive  policy,  due  to  asynchronous
flows  this  time  is  unknown  at  design.
However it  is possible to bound it,  in our
case we consider that 0ms < Twait < 0.5
ms.  Finally the  transmission  time  is  the
time  required  to  physically  transmit  the
message  on  the  bus,  it  depends  on  the
data  rate,  the  message  size  and  the
distance between nodes. All these values
are  known  at  design  time  and  so  this
transmission  time  can  be  calculated  at
design,  in  our  case  we  consider  Tx  =
0.26ms. 
To summarize the time required to send a
message  from  the  master  to  a  slave  is
unknown at  design and may be different
for  each slave,  however  it  is  possible  to
bound it :
0.76ms < Tpre+Twait+Tx+Tpost < 1.76ms

This  variable  delay  will  lead  to  a  weak
synchronization  between  nodes,  in  our
example  for  example  local  clocks  of  two
different  nodes  may  have  at  least  a
difference of 1ms, this difference between
local  clocks  will  be  referred  as  “phase”
thereafter.

Due to clock drift,  a new synchronization
message  has  to  be  sent  periodically  at
each  Major  Time  Frame  by  the  master.
The  main  point  is  that  all  the  frames
scheduled in a Major time Frame have to
be  sent  before  a  node  starts  the  next
Major time Frame. Each node starts a new
Major  time  Frame  when  receiving  this
synchronization message. This means that
the  master  has  to  avoid  to  send  this
message too soon, and so a minimal idle
time has to be defined at the end of the
Major time Frame, see Figure 4. 
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Figure 5: A timing diagram showing time
spent sending a message from a source
node to a destination node. (Fig 2 in [2])
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First, without considering clock drift, as the
message  transmission  delay  may  vary
(see above),  the master has to take into
account  the  worst  case.  This  case  is
illustrated Figure 6. In this case the Slave
2 receives the first transmission frame with
the  maximal  delay,  so  it  starts  its  Major
frame time later than Slave 1. The master
has to  wait  in  order  to  avoid  that,  if  the
following  transmission  message  is  sent
with  the  minimal  traversal  time,  Slave  2
receives  it  before  the  end  of  its
transmissions.  The  slave  has  to  receive
these  messages  with  a  minimal  time
between them large enough to send all the
frames.  This  imposes  for  the  master  a
minimum idle  time  equal  to  the  maximal
phase  between the master and the slave:
φmax.  In  this  case  it  ensures  that  all  the
slaves finish their transmission before the
new major time frame, then they may have
an idle time (Slave 1) or not (Slave 2).
Secondly, due to clock drift, the  accuracy
of  the  clock:  ε, has  to  be  taken  into
account. If the clock of the master is faster
than the reference time and the clock of
the  slave  slower,  during  a  time  T,  their
difference is bounded by: 2εT.
It lead us to: 

3.2 Sporadic/Asynchronous
flows and alarms
The  method  presented  in  [1] only

considers  periodic  flows  with  offsets:
messages  are  sent  periodically  with  a
known  offset.  However  in  practice  many
systems  also  contain
sporadic/asynchronous  flows:  messages
are sent as soon as specificevents occur,
respecting a minimal duration between two
successive frames. Such transmission can
be triggered by alarms that, by definition,
cannot  be scheduled,  or  for  instance the
period of the flows sent by the engine in
automotive  networks  depends  on  the
engine frequency.  However, in order to be
able  to  respect  timing  constraints,
asynchronous flows has a bandwidth limit
defined  by  two  parameters:  a  minimal
duration between two successive frames,
the Minimum Update Time (MUT), and a
maximal  frame  size.  These  parameters
can be used to define an arrival curve and
so compute a worst case response time.

3.3 CAN FD

The increasing system complexity requires
to  increase  the  bandwidth.  The  classic
CAN's bit rate is limited to 1Mbps due to
its arbitration mechanism for media access
control, and the number of data per CAN
frame  is  limited  to  8  bytes.  In  order  to
overcome these limitations while  keeping
most  of  the  software  and  hardware
unchanged. R. Bosch GmbH introduced in
2012 CAN FD [3] (CAN with Flexible Data-
rate).  CAN  FD  modifies  the  CAN  frame
format by increasing the maximal number
of data bytes per CAN frame up to 64 and
by permitting to switch the bit rate to faster
value inside the CAN frame.  In Network
Calculus  we  are  interested  in  the  frame
size from the point of view of the network,
i.e. the duration of bus occupancy. In order
to represent CAN FD in network calculus,
it is sufficient to consider it as a classical
CAN frame with the same bus occupancy
duration, see Figure 7.
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Idle Time ≥ 2ε MAF+ φmax 

Figure 7: CAN FD data frame format

Figure 6: Minimal Major time Frame for the
master
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3.4 Transmission errors
Real-time  distributed  applications  have
often  the  obligation  to  respect  stringent
temporal  constraints.  It  may be essential
to take into account of transmission errors
in Network Calculus in order to ensure that
time  constraints  are  respected.
Transmission  errors  are  a  random
phenomenon, and so it cannot be forecast.
However  Tindell  and  Burns,  in  [4],  have
introduced  the  idea  that  the  number  of
errors  can  be  upper  bounded  during  a
given  time  period.  This  upper  bound  is
characterized by: 

-Nerror,  the  burst  errors,  it  is  the
maximal number of errors that could occur
back-to-back

-Terror, the residual error period.

The number of transmission errors during
time t is thus:

This result  can then be used in Network
Calculus for adapting the service curve. If
β is the service curve without considering
errors  then  the  service  curve  with
transmission errors is:

Where  Lmax is  the  maximal  frame size,
because each errors can lead to the loss
of a complete frame, in the worst-case the
largest frame of the system. And Lerror is
the  maximal  size  of  the  error  frame (23
bytes), see [10].

5. Case-studies

In  order  to  show  the  usability  of  our
method  we  decide  to  adapt  a  real  CAN
bus  configuration  presented  in  [8].  The
system model consists of 6 identical nodes
that  are  connected  to  a  single  CAN
network.  There  are  69  messages  in  the
system.  Figure  8 shows  for  the  set  of
frames the number of flows per period and
payload, as indicated by the size of circle
and the number  inside.  For  example  the
number 8 in the right bottom corner means
that  there  are  8  flows  with  a  period  of
10ms and a payload of 8 bytes. The CAN
bus data rate is 500 kbps and its utilization
is  60.25%.  In  a  first  step,  we  decide  to
consider  the  69  messages  as  periodic.
The frame offset assignment that is used
in  this  study  is  the  SOPA  algorithm
available in the RTaW-Pegase and RtaW-
Sim  software  from  the  company  RTaW.
SOPA  algorithm  has  been  chosen
because  our  experience  is  that  it
consistently  outperforms  the  few  other
offset algorithms available  [7][9], and thus
provides us with an estimate of  the best
possible  gains  that  can  be  achieved  in
practice  with  offsets.  Moreover  we  have
supposed that the number of errors can be
upper  bounded  as  explained  previously
with  Nerror = 2 and Terror = 100ms. 

The  first  experiment,  see  Figure  9,
considers that all flows are purely periodic.
In  order  to  evaluate  the gain  due to  the
bounded synchronization we compare the
delay bounds obtained without using offset
and with only local clocks. The results with
phases  take  into  account  an  additional
flow used to maintain the synchronization
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 Nerror + ⌈ t
Terror

⌉  - 1 

Figure  8:  Distribution  of  the  size  of  the
data payloads and periods for the tested
configuration. 

Figure 9: Delay bounds with only periodic
messages (phase = 1ms)

 βerror =  

β - ( Nerror + ⌈ t
Terror

⌉  - 1).(Lmax+Lerror) 
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considered  with  the  highest  priority.
Results can be compared on Figure 9, and
reveal  an  average  gain  of  around  53%
compared  with  a  system  without  offsets
and  an  average  gain  of  around  22%
compared with a system with local clocks.
For very high priority frames (1-15)   this
gain is far lower because maintaining the
synchronization  requires  to  add  a  flow
which increases the worst case response
time  as  it  will  delay  the  others  flows.
However  the  gains  of  synchronization
outweigh this disadvantage.

In a second step,  we decide to consider
that  our  systems  does  not  only  contain
periodic  flows  but  also  sporadic
messages.  We  consider  that  sporadic
messages  have  a  higher  priority  than
periodic  messages  as  they  are  used  for
alarms, so we decide to set  as sporadic
50% of messages from priority 1 to 17 and
25% from priority 18 to 34; the rest of the
traffic remains periodic. The distribution is
summarized in Table Table 1.

It is important to notice that highest priority
flows  are  also  flows  with  the  smallest
period,  that  is  why  in  this  system,  more
than  40%  of  the  total  load  have  been
changed to sporadic traffic.

Results are presented Figure 10.  For high
priority  frames  (1-30)  the  gain  of  using
offsets  is  limited  because  an  important
part of the traffic is sporadic, moreover as
previously mentioned there is an additional
flow  to  maintain  the  synchronization.
However for frames of low priority (40-75)
the  gain  due  to  offset  remains  very
important,  45%  compared with  a  system
without  offset  and 17% compared with  a
system with local clocks.

6. Conclusion

The major contribution of this paper is to
show the applicability  in  a realistic  case-
study of the new approch presented in [1]:
using  bounded  clock  desynchronization,
which offers a trade-off between a global
clock  and  local  clocks.  Using  a  global
clock  requires  synchronization
mechanisms  with  a  precision  much
smaller  than the frame sending  time  but
their  implementation  on a  COTS can be
costly.  Using local  clocks does not avoid
inter-nodes contentions.
In  this  paper  we  propose  a  simple
synchronization mechanism to establish a
system  with  bounded  phases  between
nodes,  but  results  presented  also  apply
with  any  of  them.  We used  the  method
developed  in  [1] to  bound  the  delay  of
CAN with bounded desynchronization and
show how this method  can be used in a
context  mixing  asynchronous  flows  and
periodic flows with offsets. Furthermore we
have extended the technique presented in
[1] to take into account errors.
The experiments have brought  insights on
the beneficial  impact of bounded phases,
with,  on  our  case-studies,  an  average
delay  reduction  of  around  50% when  all
the  traffic  is  periodic.  Even  when  an
important part of the traffic is sporadic the
used  of  bounded  phases  remains  very
beneficial.
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Figure  10:  Delay  bounds  with  40%  of
sporadic messagesTable  1:  Distribution  between  periodic

and sporadic messages

Periodic Sporadic

Priorities

1-17 50% 50%

18-34 75% 25%

35-69 100% 0%

Part of the load 60% 40%
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