
iCC 2017 CAN in Automation

Reducing CAN latencies by use of weak
synchronization between stations

Hugo Daigmorte1, Marc Boyer1, Jörn Migge2

1ONERA, Université de Toulouse, France
2RealTime-at-Work, France

Scheduling frames with offsets has been shown in the literature to be very beneficial
for reducing response times in real-time networks because it allows the workload to
be better spread over time reducing thus peaks of load. Maintaining a global
synchronization amongst the stations induces substantial overhead and complexity in
networks not providing a global time service such as CAN. Indeed, on CAN, a global
clock is rarely implemented in practice and each station possesses its own local
clock. Without a global clock, the de-synchronization between the streams of frames
created by offsets remains local to each station and thus less efficient. In a previous
paper [1], we developed a method to compute latency upper bounds for set of
messages with offsets when the inter-node synchronization is not perfect. On a
simplified test case, we obtained a reduction of 65% of the delay using a clock
accuracy of only 1ms. In this article, we extend the method to consider a realistic case
study (mixing periodic and asynchronous flows, considering errors and tacking into
account the synchronization protocol).

1. Introduction

1.1 Context
Controller Area Network (CAN) is a serial
communication bus network that was
initially developed for automotive
applications in the mid 90s. Due to the
many advantages of CAN, including its
high reliability and cost effectiveness, it
has found application in other industries.
Real-time distributed applications
increasingly use CAN for transmitting real-
time information. These applications often
require to respect temporal constraints
and so to bound the communication
latencies of the frames, also called the
worst case response times (WCRT).

It is well known (e.g., see [9]) that the use
of offsets reduces frame response times
and increases the possible bus utilization
level. Indeed, offsets allow the workload to

be better balanced over time which
reduces contention for the bus access
and, as a result, decrease the frame
response times and allow a better
bandwidth utilization. However
implementing offsets requires a clock. In
distributed systems there are two main
solutions: all nodes share a global clock or
each node has its own local clock. In both
cases, each message is sent at an certain
offset with regard to a clock.

1.2 Weak Synchronization
In case of global clock all nodes have (up
to a certain precision) the same clock
value, and with the proper time-triggered

frame schedule no contentions occur,
neither between the flows from the same
node, nor from different nodes. However
global clock requires synchronization

04-1

Figure 1: Schedule example with a global clock

iCC 2017 CAN in Automation

mechanisms, and the clock precision must
be much smaller than the sending time of
one frame such that there is no contention.
An example of such a schedule is given in
Figure 1. A time slot is dedicated to each
message, and no contention occurs
between the flows A, B, C.

In case of local clocks, the scheduling
remains local. Using local clocks avoids
the contentions between flows from the
same node, and reduces the contentions
between flows from different nodes. Two
example schedules are given in Figure 2.
Contentions between flows A and B from
node 1 cannot happen. However
contentions between flows from different
nodes can happen: between A and C
(upper case) and between B and C (lower
case). Nevertheless, offsets with local
clocks create some traffic shaping and
reduce contentions between nodes: C can
be delayed by at most A or B but never
both of them.

We introduce the notion of bounded
phases as a trade-off between global clock

and local clocks: a system with a global
clock but a weak precision, that can also
be seen as a system with local clocks,
where the phases between the clocks are
bounded. The phases between nodes is
not perfectly known but bounded, and
some contentions can be avoided. An
example schedule is shown in Figure 3.
Like in the case of local clocks, no
contention will occur between the flows A
and B. But if the phase (x) between N1
and N2 is small enough, no contention can
occur between flows B and C. This shows
that it is possible to benefit from some of
the advantages of a global clock with
fewer constraints on the synchronization
between nodes.

1.3 Contribution
We have shown in [1] that important gains
with respect to the communication
latencies can be achieved if we implement
bounded clock de-synchronization. For the
sake of understanding, some
simplifications were done in [1]:

• the traffic associated to the
synchronization mechanism had

04-2

Figure 2: Schedule examples with local clocks

Figure 3: Schedule example with bounded phases

iCC 2017 CAN in Automation

not been considered,
• no event-triggered traffic was

considered,
• only standard CAN 2.0A was

considered,
• transmission errors were not taken

into account.
In this article, we propose to show an
acceptable synchronization mechanism,
how this method can be used in a context
mixing asynchronous flows and periodic
flows with offsets, how to take into account
CAN FD traffic and how errors can be
considered.

2. Computing an upper bound with
network calculus

Network calculus is a theory to derive
deterministic upper bounds on the
communication latencies in networks. In
[6] it has been shown that application of
Network Calculus can bound the worst
case response times for CAN bus. In
network calculus, input and output flows of
data are modeled by cumulative functions
which represent the amount of data
produced by the flow up to time t. The
servers are just relations between some
input and output flows, a server S receives
an arrival/input flow, A(t), and delivers the
data after some delay, it is the
departure/output flow, D(t). We always
have the relation D ≤ A, meaning that data
can only go out after their arrival.
However the exact input/output data flows
are in general unknown at design time, or
too complex, and the calculus of these
cumulative functions cannot be obtained.
Nevertheless, the evolution of input/output
data flows can be determined considering
contracts on the traffics and the services in
the network. For this purpose, Network
Calculus provides the concepts of arrival
curve and service curve, that have been

more widely described in [5].

Definition 1 (Arrival curve): Let A be a flow,
and α be a non decreasing function. Then,
α is an arrival curve for flow A, iff :

∀(t, d) ∈ ℝ2 , A(t + d) − A(t) ≤ α(d)

Definition 2 (Service curve): A server S
offers a strict service β iff for all
input/output A,D and for all busy period
(s,t]

D(t) − D(s) ≥ β(t − s)

Knowing the arrival and the service curve
for a flow and a server it is possible to
deduce a bound for the worst case
traversal time. More details on network
calculus can be found in [5] and for this
specific case in [1].

04-3

Figure 4: Example of scheduling using Major and Minor Time Frame

iCC 2017 CAN in Automation

3. Contribution
3.1 Synchronization protocol

Several synchronization protocols have
been proposed, but their implementation
on COTS components can be costly, and
the use of dedicated hardware is not
always possible. The one presented in
this section describes an acceptable
method. This method is based on a
minor/major time frame (MIF/MAF)
concept where all the nodes share the
same minor/major time frame period, see
Figure 4. At the end of each Major time
frame an idle time of variable duration
exists. Due to hardware and software
latency, it may be hard to start all MAF at
exactly the same time, but it could be
possible to have a bounded phase
between them.
The synchronization protocols that we
envisage is based on a master that sends
a frame at the beginning of the each Major
Time Frame Cycle. This message is then
used by each node on the bus in order to
define a reference point for their own local
clock. This message has to be sent not
only at the beginning of the
synchronization but at every new Major
Time Frame because of the local clocks
drifting apart.
However even if every node uses the
same message to define the origin of their
clocks it does not guarantee that they will
be perfectly synchronized. A message
transmission delay can be broken into four
parts: a preprocessing time (Tpre), a
waiting time (Twait), a transmission time
(Tx) and a postprocessing time (Tpost),
see Figure 5. And these times may vary
for the same message considering
different destination nodes.

The preprocessing time is the time
required to acquire data from the

environment and encode them into
network data whereas the postprocessing
time is the time required to decode the
network data and transmit them to the
environment. These times are unknown at
design and depend on the device software
and hardware characteristics, however
they can be bounded. In this study we use
results presented in [2] and consider that
0.5 ms < Tpre + Tpost < 1 ms. The waiting
time is the time spent in the queue at the
sender buffer. Even if we consider that our
synchronization messages have the
highest priority, CAN bus use a non-
preemptive policy, due to asynchronous
flows this time is unknown at design.
However it is possible to bound it, in our
case we consider that 0ms < Twait < 0.5
ms. Finally the transmission time is the
time required to physically transmit the
message on the bus, it depends on the
data rate, the message size and the
distance between nodes. All these values
are known at design time and so this
transmission time can be calculated at
design, in our case we consider Tx =
0.26ms.
To summarize the time required to send a
message from the master to a slave is
unknown at design and may be different
for each slave, however it is possible to
bound it :
0.76ms < Tpre+Twait+Tx+Tpost < 1.76ms

This variable delay will lead to a weak
synchronization between nodes, in our
example for example local clocks of two
different nodes may have at least a
difference of 1ms, this difference between
local clocks will be referred as “phase”
thereafter.

Due to clock drift, a new synchronization
message has to be sent periodically at
each Major Time Frame by the master.
The main point is that all the frames
scheduled in a Major time Frame have to
be sent before a node starts the next
Major time Frame. Each node starts a new
Major time Frame when receiving this
synchronization message. This means that
the master has to avoid to send this
message too soon, and so a minimal idle
time has to be defined at the end of the
Major time Frame, see Figure 4.

04-4

Figure 5: A timing diagram showing time
spent sending a message from a source
node to a destination node. (Fig 2 in [2])

iCC 2017 CAN in Automation

First, without considering clock drift, as the
message transmission delay may vary
(see above), the master has to take into
account the worst case. This case is
illustrated Figure 6. In this case the Slave
2 receives the first transmission frame with
the maximal delay, so it starts its Major
frame time later than Slave 1. The master
has to wait in order to avoid that, if the
following transmission message is sent
with the minimal traversal time, Slave 2
receives it before the end of its
transmissions. The slave has to receive
these messages with a minimal time
between them large enough to send all the
frames. This imposes for the master a
minimum idle time equal to the maximal
phase between the master and the slave:
φmax. In this case it ensures that all the
slaves finish their transmission before the
new major time frame, then they may have
an idle time (Slave 1) or not (Slave 2).
Secondly, due to clock drift, the accuracy
of the clock: ε, has to be taken into
account. If the clock of the master is faster
than the reference time and the clock of
the slave slower, during a time T, their
difference is bounded by: 2εT.
It lead us to:

3.2 Sporadic/Asynchronous
flows and alarms
The method presented in [1] only

considers periodic flows with offsets:
messages are sent periodically with a
known offset. However in practice many
systems also contain
sporadic/asynchronous flows: messages
are sent as soon as specificevents occur,
respecting a minimal duration between two
successive frames. Such transmission can
be triggered by alarms that, by definition,
cannot be scheduled, or for instance the
period of the flows sent by the engine in
automotive networks depends on the
engine frequency. However, in order to be
able to respect timing constraints,
asynchronous flows has a bandwidth limit
defined by two parameters: a minimal
duration between two successive frames,
the Minimum Update Time (MUT), and a
maximal frame size. These parameters
can be used to define an arrival curve and
so compute a worst case response time.

3.3 CAN FD

The increasing system complexity requires
to increase the bandwidth. The classic
CAN's bit rate is limited to 1Mbps due to
its arbitration mechanism for media access
control, and the number of data per CAN
frame is limited to 8 bytes. In order to
overcome these limitations while keeping
most of the software and hardware
unchanged. R. Bosch GmbH introduced in
2012 CAN FD [3] (CAN with Flexible Data-
rate). CAN FD modifies the CAN frame
format by increasing the maximal number
of data bytes per CAN frame up to 64 and
by permitting to switch the bit rate to faster
value inside the CAN frame. In Network
Calculus we are interested in the frame
size from the point of view of the network,
i.e. the duration of bus occupancy. In order
to represent CAN FD in network calculus,
it is sufficient to consider it as a classical
CAN frame with the same bus occupancy
duration, see Figure 7.

04-5

Idle Time ≥ 2ε MAF+ φmax

Figure 7: CAN FD data frame format

Figure 6: Minimal Major time Frame for the
master

iCC 2017 CAN in Automation

3.4 Transmission errors
Real-time distributed applications have
often the obligation to respect stringent
temporal constraints. It may be essential
to take into account of transmission errors
in Network Calculus in order to ensure that
time constraints are respected.
Transmission errors are a random
phenomenon, and so it cannot be forecast.
However Tindell and Burns, in [4], have
introduced the idea that the number of
errors can be upper bounded during a
given time period. This upper bound is
characterized by:

-Nerror, the burst errors, it is the
maximal number of errors that could occur
back-to-back

-Terror, the residual error period.

The number of transmission errors during
time t is thus:

This result can then be used in Network
Calculus for adapting the service curve. If
β is the service curve without considering
errors then the service curve with
transmission errors is:

Where Lmax is the maximal frame size,
because each errors can lead to the loss
of a complete frame, in the worst-case the
largest frame of the system. And Lerror is
the maximal size of the error frame (23
bytes), see [10].

5. Case-studies

In order to show the usability of our
method we decide to adapt a real CAN
bus configuration presented in [8]. The
system model consists of 6 identical nodes
that are connected to a single CAN
network. There are 69 messages in the
system. Figure 8 shows for the set of
frames the number of flows per period and
payload, as indicated by the size of circle
and the number inside. For example the
number 8 in the right bottom corner means
that there are 8 flows with a period of
10ms and a payload of 8 bytes. The CAN
bus data rate is 500 kbps and its utilization
is 60.25%. In a first step, we decide to
consider the 69 messages as periodic.
The frame offset assignment that is used
in this study is the SOPA algorithm
available in the RTaW-Pegase and RtaW-
Sim software from the company RTaW.
SOPA algorithm has been chosen
because our experience is that it
consistently outperforms the few other
offset algorithms available [7][9], and thus
provides us with an estimate of the best
possible gains that can be achieved in
practice with offsets. Moreover we have
supposed that the number of errors can be
upper bounded as explained previously
with Nerror = 2 and Terror = 100ms.

The first experiment, see Figure 9,
considers that all flows are purely periodic.
In order to evaluate the gain due to the
bounded synchronization we compare the
delay bounds obtained without using offset
and with only local clocks. The results with
phases take into account an additional
flow used to maintain the synchronization

04-6

 Nerror + ⌈ t
Terror

⌉ - 1

Figure 8: Distribution of the size of the
data payloads and periods for the tested
configuration.

Figure 9: Delay bounds with only periodic
messages (phase = 1ms)

 βerror =

β - (Nerror + ⌈ t
Terror

⌉ - 1).(Lmax+Lerror)

iCC 2017 CAN in Automation

considered with the highest priority.
Results can be compared on Figure 9, and
reveal an average gain of around 53%
compared with a system without offsets
and an average gain of around 22%
compared with a system with local clocks.
For very high priority frames (1-15) this
gain is far lower because maintaining the
synchronization requires to add a flow
which increases the worst case response
time as it will delay the others flows.
However the gains of synchronization
outweigh this disadvantage.

In a second step, we decide to consider
that our systems does not only contain
periodic flows but also sporadic
messages. We consider that sporadic
messages have a higher priority than
periodic messages as they are used for
alarms, so we decide to set as sporadic
50% of messages from priority 1 to 17 and
25% from priority 18 to 34; the rest of the
traffic remains periodic. The distribution is
summarized in Table Table 1.

It is important to notice that highest priority
flows are also flows with the smallest
period, that is why in this system, more
than 40% of the total load have been
changed to sporadic traffic.

Results are presented Figure 10. For high
priority frames (1-30) the gain of using
offsets is limited because an important
part of the traffic is sporadic, moreover as
previously mentioned there is an additional
flow to maintain the synchronization.
However for frames of low priority (40-75)
the gain due to offset remains very
important, 45% compared with a system
without offset and 17% compared with a
system with local clocks.

6. Conclusion

The major contribution of this paper is to
show the applicability in a realistic case-
study of the new approch presented in [1]:
using bounded clock desynchronization,
which offers a trade-off between a global
clock and local clocks. Using a global
clock requires synchronization
mechanisms with a precision much
smaller than the frame sending time but
their implementation on a COTS can be
costly. Using local clocks does not avoid
inter-nodes contentions.
In this paper we propose a simple
synchronization mechanism to establish a
system with bounded phases between
nodes, but results presented also apply
with any of them. We used the method
developed in [1] to bound the delay of
CAN with bounded desynchronization and
show how this method can be used in a
context mixing asynchronous flows and
periodic flows with offsets. Furthermore we
have extended the technique presented in
[1] to take into account errors.
The experiments have brought insights on
the beneficial impact of bounded phases,
with, on our case-studies, an average
delay reduction of around 50% when all
the traffic is periodic. Even when an
important part of the traffic is sporadic the
used of bounded phases remains very
beneficial.

04-7

Figure 10: Delay bounds with 40% of
sporadic messagesTable 1: Distribution between periodic

and sporadic messages

Periodic Sporadic

Priorities

1-17 50% 50%

18-34 75% 25%

35-69 100% 0%

Part of the load 60% 40%

iCC 2017 CAN in Automation

Daigmorte Hugo, Boyer Marc

ONERA

2, avenue E. Belin

F-31055 Toulouse Cedex

Phone: (33) 5.62.25.26.36

Fax: (33) 5.62.25.26.93

E-mail: firstname.name@onera.fr

http://www.onera.fr/staff/marc-boyer/

http://www.onera.fr/staff/hugo-daigmorte/

Migge Jörn

RealTime-at-Work
Immeuble Thiers, 4 rue Piroux

F-54000 Nancy

Phone: (33) 3.83.85.00.03

Fax: (33) 3.83.30.45.98

E-mail: jorn.migge@realtimeatwork.com

References

[1] DAIGMORTE, Hugo and BOYER, Marc.
Traversal time for weakly synchronized
CAN bus. In : Proceedings of the 24th
International Conference on Real-Time
Networks and Systems. ACM, 2016. p. 35-
44.

[2] LIAN, Feng-Li, MOYNE, James, and
TILBURY, Dawn. Network design
consideration for distributed control
systems. IEEE Transactions on Control
Systems Technology, 2002, vol. 10, no 2,
p. 297-307.

[3] HARTWICH, Florian. CAN with flexible
data-rate. In : Proc. ICC. 2012.

[4] TINDELL, Ken et BURNS, Alan.
Guaranteed message latencies for
distributed safety-critical hard real-time
control networks. Dept. of Computer
Science, University of York, 1994.

[5] LE BOUDEC, Jean-Yves and THIRAN,
Patrick. Network calculus: a theory of
deterministic queuing systems for the
internet. Springer Science & Business
Media, 2001.

[6] SOFACK, William Mangoua and BOYER,
Marc. Non preemptive static priority with
network calculus: Enhancement. In :
International GI/ITG Conference on
Measurement, Modelling, and Evaluation
of Computing Systems and Dependability

and Fault Tolerance. Springer Berlin
Heidelberg, 2012. p. 258-272.

[7] GRENIER, Mathieu, GOOSSENS, Joël,
and NAVET, Nicolas. Near-optimal fixed
priority preemptive scheduling of offset
free systems. In: 14th International
Conference on Real-Time and Networks
Systems (RTNS'06). 2006. p. 35--42.

[8] ZENG, Haibo, DI NATALE, Marco,
GIUSTO, Paolo, et al. Using statistical
methods to compute the probability
distribution of message response time in
controller area network. IEEE Transactions
on Industrial Informatics, 2010, vol. 6, no
4, p. 678-691.

[9] GRENIER, Mathieu, HAVET, Lionel and
NAVET, Nicolas. Pushing the limits of
CAN – Scheduling frames with offsets
provides a major performance boost, In:
4th European Congress Embedded Real
Time Software (ERTS 2008), Toulouse,
France, January 29 – February 1, 2008.

[10] NAVET, Nicolas, SONG, Y.-Q., et
SIMONOT, Françoise. Worst-case
deadline failure probability in real-time
applications distributed over controller
area network. Journal of systems
Architecture, 2000, vol. 46, no 7, p. 607-
617.

04-8

http://www.onera.fr/staff/marc-boyer/
http://www.onera.fr/staff/hugo-daigmorte/

	References

