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Abstract

Most of today’s commercial Real-Time Operating Systems (RTOSs) offer multiple schedul-
ing policies which are applied on a per-process basis. The best illustrations of this are the
Posix1003.1b compliant OSs that provide two real-time scheduling policies, namely sched_ fifo
and sched_rr, which under some limited hypotheses are respectively the equivalent of Fixed
Priority Pre-emptive (FPP) and Round-Robin (RR). In the field of processor scheduling,
schedulability analysis has been extensively studied and the problem of assessing the schedu-
lability of multi-policy systems has been recently addressed in [38]. When FPP and RR are
used in conjunction, no optimal priority/policy assignement, such as Audsley’s algorithm for
FPP [3], is known, a fortiori when other criteria besides feasibility are considered. Because of
the size of the solution space, an exhaustive search is not possible; an optimisation technique
is required. A schedulability analysis provides valuable help for the application designer but it
simply asserts whether a given configuration is feasible or not, in general it does not propose
any feasible configurations (1) and, as stated by Gerber and Hong in [23] "it can rarely help to
tune the system (2), which is the inevitable next step”. To address problems (1) and (2), we
propose in this study an approach using a Genetic Algorithm (GA) to best set task priorities
and scheduling policies, according to a chosen criterion, on Posix 1003.1b uniprocessor sys-
tems. Moreover, it will be shown in this study that the use of RR, in conjunction with FPP,
may improve the schedulability as well as the satisfaction of additional application-dependant

criteria.



1 Introduction

Context of the paper. In [50], Stankovic et al. stated that "due to economic and porta-
bility considerations, the tendency towards the use of off-the-shelf hardware and software com-
ponents to build real-time systems is increasing.” In the field of RTOS, several Posix1003.1b
compliant kernels, for instance LynxOS and QNX, are commercially available with real-time
features such as very fast context-switch latencies, semaphores, programmable timers and
multi-level priorities [21]. Those OSs offer cost and performance-effective solutions to appli-
cation designers for building real-time systems using Commercial Off-The-Shelf (COTS) OSs.
The answer to the "Make-or-Buy" [5] decision is typically "buy" when short development time,
portability and tool availability are matters of concern (TCP/IP networking, flash file system,
HTTP server, PCMCIA drivers ...). On the other hand, the use of COTS RTOS often leads
to certification problems and their use in fault-tolerant systems is problematic because their
behaviour in the presence of faults is often weak [47, 32] and not well defined.

Posix (Portable Operating System Interface) is a standard which defines features and inter-
faces that a Unix-like OS must have. It aims to improve portability at the source code level and
ease of programming. Posix 1003.1b standard [28], formerly Posix.4, defines real-time exten-
sions to Posix mainly concerning signals, inter-process communication, memory mapped files,
memory locking, synchronous and asynchronous I/O, timers and scheduling policies. Most of
today’s real-time operating systems conform, at least partially, to this standard although it
has been criticised [42] for not possessing features appropriate to small embedded systems.

Posix 1003.1b specifies 3 scheduling policies : sched rr, sched_ fifo and sched_other. These
policies apply on a process-by-process basis : each process runs with a particular policy and
a given priority. Each process inherits its scheduling parameters from its father but may also

change them at run-time.

e sched_fifo : fixed pre-emptive priority with fifo ordering among same-priority processes.
In the rest of the paper, it will be assumed that all sched _ fifo tasks of an application have
different priorities. With this assumption and without priority change during run-time,

sched_ fifo is equivalent to the Fixed Preemptive Priority policy, FPP for short.

e sched_rr: Round-Robin policy (RR for short) which allows processes of the same priority
to share the cpu. Note that a process will not get the cpu until all higher priority ready-
to-run processes are executed. The quantum value may be a system-wide constant (e.g.

QNX OS), process specific (e.g. VxWorks OS) or fixed for a given priority level.

e sched other is an implementation-defined scheduler. It could map onto sched fifo or
sched rr, or also implement a classical Unix time-sharing policy. The standard merely
mandates its presence and its documentation. Because we cannot rely on the same
behaviour of sched_other under all Posix compliant operating systems, it is strongly

suggested not to use it if portability is a matter of concern and we won’t consider it in



our analysis.

Associated with each policy is a priority range. Depending on the implementation, these
priority ranges may or may not overlap but most implementations allow overlapping. Note
that these previously explained scheduling mechanisms similarly apply to Posix threads with
the system contention scope as standardised by Posix 1003.1c standard [28].

Real-time scheduling theory is based on the concept of recurrent tasks. In the context of RTOS,
we define a task as a recurrent activity which is either performed by repetitively launching a

process (or a thread) or by a unique process that runs in cycles.

Problem definition. A schedulability analysis for Posix 1003.1b compliant systems, such
as proposed in [38] (see section 2 for a recap), simply says whether a given allocation strategy
for policies and priorities is feasible or not. An optimal allocation strategy, such as Audsley’s
algorithm [2, 3] for FPP, has not yet been found when RR and FPP are used in conjunction.
In fact, the problem does not only consist in setting the priorities as in the FPP case, but
also in choosing, for each task, the policy (either RR or FPP) and the time quantum under
RR. Furthermore, when several feasible solutions exist, such an algorithm would not help to
choose the best solution for a particular application when additional criteria besides feasibility
are taken into account.

In this paper, we investigate a method for fixing scheduling policies and priorities such as to
obtain (1) a feasible solution and (2) a solution that performs well according to some additional
criteria. Depending on the application, the objective can, for instance, be the minimising of
end-of-execution jitter for a given task if its work has to be produced as periodically as possible

or can be to maximise the freshness or the consistency of a set of input data (see 3.3.2).

Limits of schedulability analysis The possibility of finding a usable solution on Posix1003.1b
systems with the use of schedulability analysis alone has some limits that we discuss in the
following.

A problem encountered with schedulability analysis on Posix1003.1b systems is that it is not
always easy to find even one feasible solution and this is particularly true on heavily loaded
systems with tight timing constraints and many tasks. With such systems, a great number of
unsuccessful attempts can be necessary to find one feasible solution. Of course, one solution is
to limit ourselves to the use of the FPP policy and in this case the Audsley algorithm enables
the designer to determine an optimal priority assignment in an efficient way. However, this
solution is clearly unsatisfactory because not using RR reduces the schedulability as is shown
in Section 5.1.

Furthermore, a schedulability analysis is of limited help for fine tuning a system because of
its necessarly pessimistic assumptions on the worst-case execution times (as pointed out in

[21]) and also because its results are worst-case oriented (the only considered trajectories of



the system are the most pessimistic ones). Given a set of feasible configurations, how should
we choose the best one for a particular application just by considering schedulability analysis
results 7 In our opinion, probabilistic properties on the behaviour of the system may add
useful information when tuning an application. In this study, such information is obtained

through simulation.

Overview of the approach Due to the combinatorial nature of the problem of best
setting priorities and scheduling policies for a set of tasks (see 3.1 for the exact complexity
of the problem) on a Posix 1003.1b compliant system, the use of an optimisation technique
is required. To address this problem, we propose in this study a GA based on a hybrid

deterministic/stochastic approach :

e schedulability analysis is used for distinguishing feasible and non-feasible solutions, using

worst-case erecution times.

e the quality of each feasible solution is evaluated through simulation using stochastic
ezecution times that can be derived from measures taken from a prototype or from
analyses. The use of simulation is required because of the nature of the fitness criteria

(see 3.3.2).

Our approach allows the designer to improve the quality of the solution whilst preserving the

feasibility which is the basic requirement for real-time computing.

Related work. Tindell et al. proposed the use of simulated annealing for allocating tasks
to processors in a real-time distributed application networked with the token protocol in [52].
In this study, the problem addressed is not the setting of priorities and policies : priorities
are assigned using the deadline monotonic scheme with FPP policy, but the problem is where
to locate the tasks in such a way that the solution meets physical (memory, cpu utilisation)
and timing constraints (end-to-end delays). The aim of this paper was not to tackle the
problem of tuning the system according to a chosen criterion but it points out that the use
of an optimisation technique can be an effective approach for solving scheduling problems
in the field of real-time computing. Simulated annealing was also used in [14] for finding
feasible schedules with minimised jitter in the distributed case. The authors assume that the
assignment of the tasks to the processors is fixed and they calculate feasible non-preemptive
schedules of tasks on the local CPUs using simulated annealing with regard to access to shared
resources such as the communication network. The optimisation is only based on worst-case
assumptions, for example, all instances of the tasks need their worst-case execution time to
finish.

In this study, we decided to use the technique of GAs because it has already been exten-
sively used for solving scheduling problems such as Job-Shop [12, 43, 18, 15, 46], the Travelling

Salesman problem [45, 25], instruction scheduling [8, 7], or scheduling on multiprocessor en-



vironments [30, 48, 16, 33, 11, 17, 53] and has proven to be successful. GA performances
have been compared with other optimisation techniques such as Tabu Search [6] or Simulated
Annealing [51] and the results show that GAs are never bad on average for a large vari-
ety of problems : GA is said to be a robust approach [24]. For instance, previous studies [27]
(quoted in [11]) have shown that GAs are far less sensitive to parameter values than Simulated
Annealing whose performances are largely dependant on the fine tuning of the parameters.
Furthermore, because there is a single solution that is modified over time, Simulated Annealing

is in essence a serial algorithm which is difficult to parallelize.

Working Assumptions Due to the complexity of the general problem, the following
restrictions to the problem of fixing priorities and policies of a set of periodic/sporadic tasks

on Posix1003.1b uniprocessor systems are placed :
1. Tasks have no jitter in their availability date.
2. Context-switch latencies are neglected.
3. Tasks do not have critical sections during which they cannot be pre-empted.

4. Since a priority level without any task has no effect on the scheduling, we impose that

the priority range be contiguous.
5. Two tasks obeying different policies must not share the same priority.

6. Tasks scheduled according to the sched_ fifo policy must all be assigned different contigu-
ous priorities and their priority must not change at run-time. As previously mentioned,

with these assumptions the sched fifo policy becomes FPP.

7. Tasks obeying the sched rr policy are not allowed to change their priority at run-time

and the quantum value is a system-wide constant.

Jitter in task availability dates (assumption 1) and context switch latencies (assumption 2) can
be taken into account in the schedulability analysis developed in [38] by extending it as in [9].
Critical sections (assumption 3) can be handled by the schedulability analysis but they have
not been considered in this paper for the sake of simplicity. Assumptions 5 can be partially
relaxed by considering a process specific time quantum but because very few Posix1003.1b
compliant OSs possess this feature, we will restrain ourselves to the system-wide quantum

case.

Organisation of the paper. The paper is organised as follows : in section 2, the prin-
ciples of the schedulability analysis of Posix1003.1b systems are recapitulated, section 3 is
devoted to the description of the GA. In section 4, the performances of the proposed algo-
rithm are assessed. Finally, in section 5, we will show that the RR policy can be useful in

real-time applications.



2 Schedulability Analysis of Posix1003.1b systems :

A Recap

Scheduling according to Posix can be described as a superposition of layers of priorities [39].
Let the set of recurrent tasks 7 = {7i,...,7m} be partitioned into separate layers \; =
{me |mi—1 < k < mi}, where 1 < my_1 < m; < m. Tasks are scheduled according to the global
rule: an instance 7, of a task 7 in a layer ); is executed as soon and as long as no instance
in the (higher priority) layers A1,...,\;_1 is pending. Inside each layer, tasks are scheduled
either according to FPP or RR.

The FPP policy is realized if an instance 7, € A\ of task 7 is executed as soon as and
as long as no instance of (higher priority) tasks 7j, m;—1 < j < k in the same layer X\; (and
higher priority layers) is pending. Under RR, a task gets repeatedly the opportunity to execute
during a time slot of maximal length ¥;. If the task has no pending instance or less pending
work than the slot is long, then the rest of the slot is lost and the task has to await the next
cycle to resume. The time between two consecutive slots may vary, depending on the actual

demands of other tasks, but it is bounded by ¥' = 3 ¥, (plus possibly the preemption

TREN
from higher priority layers) in any interval where the considered task has pending instances
at any moment. If on some subinterval no instance of the task is pending, the time between
two used slots can eventually be longer because the task could not use each of its slots. If the
demand of other tasks is lower, this time can be shorter or even zero.

In [38], response time bounds for layered priorities have been derived in a general way,
independently of a specific type of task. These bounds are based on the concept of majorizing
work arrival functions, which measure the processor demand, for each task, over an interval
starting with a "generalized critical instant". With ¢z, and ax,, being the execution and
release time of the n‘" instance of the task 75, after the critical instant, the majorizing work

arrival function is
Sk(t) = ch,n . ]I[ak,n<t]'
n

If 7 is a sporadic task with maximal execution time C} and minimal interarrival time T},

then ¢k, = Cr and ag,, =n-T (n=0,1,...) and

t
si(t) = ch ) ]I[n-Tk<t] =Ck- ’Vﬁ-‘ .

The response time bouds can be expressed as

max (ex,n — @k,n), (1)

where n* = min{i | ey ; < ak,it1}, With ag, . being the n'® release time of 75, after the critical



instant. If 74 is in an FPP layer, then
er,n = min{t > 0| §k_1(t) + 5 =}, (2)

where 5;,_1(t) = Zi:ol si(t) is the demand from higher priority tasks and 53 = >_7_ ¢k, the

demand from previous instances and the current instance. If 7, is in an RR layer, then
een = min{t > 0|, (t) + 5 =1}, ®3)

where

Fule) = min ([2L] 0 50,0, si0)). 0

k
with ¢, = 1! — ¢}, being the sum of the quantums of all other tasks of the RR layer and

sp(z) = max(sk(w) + 5m, (u + &) + Sk (u + ) — u), (5)

u >0

where Sp(u+2) =30\, ;4 Si(u+ ). The algorithms for computing the response time

bounds can be found in [38].

3 Setting priorities and scheduling policies of tasks

When setting priorities and policies, there is a constraint that must be taken into account :
there may exist tasks for which the priority and/or the scheduling policy are a priori imposed.
In effect, in the development process of a real application, one will likely be working with
libraries from third-party suppliers or from the OS vendor for functions like network commu-
nication, resource management or graphic display. Such functions, such as kernel I/O drivers,
may sometimes require to be run at a particular priority, usually the highest, and/or with a

given policy, usually sched_fifo, for correctly performing work on which the application relies.

Definition 1

A priority and policy allocation strategy that respects the a priori constraints on tasks priorities
and policies, is a possible solution.

Definition 2

A possible solution which has successfully passed the schedulability analysis, and thus ensures

the application’s timing constraints to be met, is a feasible solution.

3.1 Complexity of the problem

If several tasks are assigned to the same priority level, then sched_rr must be chosen, according

to our working assumptions 5 and 6. On the other hand, sched_rr for a level with a unique



task is strictly equivalent to sched_ fifo.

Assigning n tasks to priority level(s) is like subdividing a set of n elements into non-empty
subsets, recall assumption 4. Suppose the partitioning leads to k subsets. For k subsets the
number of possibilities is by definition equal to the Stirling number of the second kind (see

[1], page 824)
k
LS ()

There are k! different possible priority orderings of the k subsets of tasks. Furthermore, n

tasks can be subdivided into k = 1,2, ..., n many subsets. Thus, there are

n

k
(p* ()i

k=1 i=0

different possibilities of assigning tasks to priority level(s), the policies being induced by the
number of tasks for each level.

As can be seen in Figure 1, the size of the solution space increases faster than exponentially,
but slower than n™. For instance, for n = 10, an exhaustive search through the entire solution
space would require more than three years and two months, assuming 1s of computation time

per possibility.
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Figure 1: Complexity of the problem for a number of tasks varying from 5 to 50.

3.2 Principle of the algorithm

Usually a computing project starts with an informal description of the functionalities and
requirements. In a real-time system, the focus is set on the timing constraints. For instance,
in the chemical process described in Section 5.2, one of the constraints is that "the temperature
of the vessel must be updated every 12ms". Starting from such informal requirements, one will
derive a set of tasks with given characteristics and timing constraints that actually performs

the work needed by the application.



and tempor al requirements
- Criterion for system tuning

| l
redesign of the application Task Set with
(e.g. program slicing) and/or Deadline constraints
code optimization
T%"i Creation of the initial population
' of solutions successful ? |

{ - Application’sfunctional }

- Offsprings creation using cross-over operator (see Fig. 2)
- Mutation of some existing solutions (see Fig. 3)

- Delete weakest solutionsiif the population has reached
its maximum size

Thebest individual according
to fitnessisthe solution

Figure 2: Overview of the approach.

The set of tasks with their constraints and a fitness criteria are the inputs of the GA which
will iteratively search through the solution space to find a satisfactory solution until the chosen
number of generations is reached. If the GA failed to find 2 feasible solutions' in the initial
population, then the application has to be either rewritten, at least partially, to diminish the
task execution time or redesigned for instance using task slicing techniques such as proposed in
[22] by Gerber and Hong. In the latter study, the authors propose the tasks to be decomposed
into two fragments, one that is time-critical (e.g. inputs from sensors, production of actuator
commands and outputs to actuators) and the other that is unobservable (e.g. state update).
The unobservable part of the task without tight timing constraints is then moved to the end

of the task which has the benefit of enhancing overall schedulability.

3.3 Genetic Algorithm

Genetic algorithms, GA for short, are biological phenomenon imitations, they were developed
by J. Holland and his colleagues at the University of Michigan [26]. GA are search algorithms
that explore a solution space and try to mimic the processes observed in the natural evolution of
a living population, that is the survival and reproduction of the individuals that are best-suited
to the environment and the disappearance of the weakest. Each individual of the population
is a solution to the problem and is characterised by its genetic footprint which is, from an
implementation point of view, a more-or-less complex data structure. The initial step of a GA
is the creation of the initial population, then each step of the algorithm consists of generating
new individuals by crossover (also called recombination) and mutations and then choosing the

best individuals, according to a "fitness" function, for survival. The result is a population that

1Two solutions are at least needed for crossover.



is globally better at each step with possible improvement for the best individual which will
be, at the end of the execution, the actual (sub-optimal) solution of the algorithm. There are
in fact a great variety of GA but generally the key points are the choice of the data that will
compose the chromosome(s) and the design of efficient crossover and mutation operators. In
this study, we adopt the following functioning scheme with overlapping populations inspired

from a scheme proposed in [13] :

1. Creation of n;,; possible solutions for the initial population using Rate Monotonic heuris-
tic (1/4 nini), Deadline Monotonic heuristic (1/4 nin;) and pure hazard (1/2 nin;), see
3.3.5. Deletion of non-feasible or duplicate solutions and evaluation of the fitness of each

feasible individual. Let psi.. be the size of the population which is currently < n;p;.

2. Creation through crossover of m., new possible solutions which are termed the offspring,
see Fig. 3(a). If an offspring is non-feasible or if an identical solution already exists in
the population, it is deleted. Otherwise, the evaluation of its fitness value precedes its

incorporation in the population of solutions.

3. Mutation of mmy: individuals, see Fig. 3(b). As for crossover, the non-feasible or dupli-
cate ones are deleted while the others are integrated in the population after their fitness

has been evaluated.

4. If the population is larger than the desired maximum size (psize > Pmaz), Suppression of

the psize — Pmaz Weakest members of the population.

5. Go to step 2 if the maximum number of generation is not reached.

Population of Solutions Population of Solutions
(€] @ @ ] @ @ (2] @ @
Add Offspring
Q © 0 0o/ o of MiEinm 0 0 0 o
update mutant
characteristics
choosd\2 individuals choose randomly|1 individual
Apply cross-over operator Apply mutation operator
that ensures that the offsprinc that ensures that the mutant
is a "possible" solution is a "possible" solution
Yes | schedulability analysis O Yes | gchequlability analysis O
i successfully passed ? : successfully passed 2 ] ]
Reject Delete
,,,,,,,,,,,,,,,,,,, : t Mutant from
Yes | offspring Yes | :
I““‘fDuplicate Solution ?| pring {AAAADuplicate Solution ?| the population
Reject - Delete No [
offspring Mutant from ifitness criteria { NO
the population needs simulation ¥

perform simulation fperform simulation

(a) Creation of an offspring through crossover. (b) Mutation of an existing solution.

Figure 3: The genetic operators.

3.3.1 Chromosome coding

In GAs, one or several chromosomes describe the solution to the considered problem. Each

chromosome is composed of genes whose values are called alleles. At the beginning of GA,
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chromosomes were essentially binary strings, but when representing solutions to complex prob-
lems, binary representations® tend to be less convenient than symbolic representations [46].
For our specific scheduling problem, we propose to code the total genetic package (or genotype)

of a solution on a single chromosome with each task being composed of 4 genes :

| priority | Oprio | scheduling policy | Ipol |

Figure 4: The 4 genes coding a task.

where the gene :
e priority is the task’s priority € {1..card(T)}.
fixed if the task’s priority is an a priori constraint

® Jprio is binary coded :
not_fixed  otherwise

FPP  if the task is sched fifo
e scheduling policy is binary coded : -

RR if the task is sched_rr

o fixed if the task’s policy is an a priori constraint
® Jpo is binary coded :
not_fixed  otherwise

A chromosome solution to a n tasks problem is an array that is the concatenation of the tasks’

genes :

genes for task 1 genes for task n

’ 1 ‘ fixed ‘ FPP ‘ fixed ’ | 3 ‘not_fixed

RR ‘ not_fixed

Figure 5: A chromosome C, solution to a n tasks problem

We define the following functions that apply to chromosome C' for extracting the properties

of tasks :
e prio(C,i) € {1..card(T)} : priority of task 7; in chromosome C.
® 0prio(C, i) € {fixed,not_fixed} : d,ri0 value of task 7; in chromosome C.
e pol(C,i) € {FPP,RR} : scheduling policy of task 7; in chromosome C'.
e 0,0:(C,1) € {fixed,not_fixed} : dpo; value of task 7; in chromosome C'.
For a chromosome to be a possible solution, the following invariants must always be verified :
1. Vry,m; € T with i@ # j, if (pol(C,i) = pol(C,j) = FPP) then prio(C,i) # prio(C,j) :
two sched_ fifo tasks can not possess the same priority (assumption 6).
2. Vi, € T if (pol(C,i) # pol(C,j)) then prio(C,i) # prio(C,j) : two tasks having

different policies must not share the same priority (assumption 5).

2In the literature e.g. [37], a GA where the chromosome coding is not fully binary is sometimes termed "evolu-
tionary algorithm".
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3. Vri € T, prio(C, i) < card(T) : for reducing the solution space, we impose that all tasks

have a priority within [1, card(T)] (assumption 4).

From an implementation point of view, a chromosome is an array of genes, each gene C[i] being
a record made of the priority (C[i].prio), the dprio value (C[i].0pri0), the policy (C[i].pol) and
the 6,01 value (Ci].0p01). For each individual of the population, in addition to the chromosome,
a data of type Real is needed to store the fitness once evaluated. We define the function

fitness(), which takes a chromosome as argument and returns its fitness.

3.3.2 Fitness function

The fitness function gives the quality of an individual according to a given criterion. Before
evaluating fitness it is mandatory for the individual to be a feasible solution that is, it has
successfully passed the schedulability analysis and thus satisfies the application’s timing con-
straints. Asrepresented in figure 3, the evaluation of some criteria may require the performance
of simulation. Although an optimisation criterion is by its nature application-dependant, we
identify the following general quality criteria that may apply to the whole task set or to a

subset of tasks :

e Minimise end-of-execution jitter [requires simulation] : After the schedulability analysis,
we know that the end of two successive instances of the same periodic task 7; is separated
by an amount of time varying between T; — R; + C; and T; + R; — C;. If the work of task
7; has to be delivered as regularly as possible, an objective to achieve is to minimise this
jitter. As the criterion to be minimised, denoted by C~, we chose the standard deviation

of the response times

=) o(R)- (6)

€T
with R; = {Rin |n + Ein < tsim}, the sample made of the response times of the
instances of task 7; collected during the simulation of length ts;m, with () the function
computing the standard deviation of a set of data and ®;, the weight given to task 7; in

the criterion (e.g. ®; = 0 means that task 7; is not considered in the calculus).

e Maximise freshness of input data [requires simulation] : let a task 7; need input data
generated by a subset 7; of tasks. The data produced by an instance 7, of a task 7, € T;
is available after its execution end, Ej,,. To be usable by an instance 7;,, it must be
available before the beginning of its execution, B; . The shorter the time between Ej, ,

and B; . the greater the freshness of the data. The criterion C; to minimise is therefore:

= > > > (Bin — Eh.a) (M)

ntE; n<tsim ThE€T; atFEp o<B;i n<Eh at1
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This criterion can be extended to take account of several tasks with different weights :

c =) ¢ - (8)

ET
Maximise data consistency [requires simulation] : when a task 7; needs several input data
X1, .., Xp, the production date of these input data should be as close in time as possible
to ensure data consistency. It is assumed that the data X, .., X, is available at the end
of the execution of task 71, .., T, respectively. We note Z;, the set of tasks whose results

will be used by task 7; as input data. For 7, € Z;, we define :
Jkin =max{j | Fr; < Bin}

which is the index of the last instance of task 7, which ends before the start of execution
of the n'" instance of task ;. The criterion which has to be minimised can be expressed

as :

= > olEin) 9)

nb By <toim
where o (E;,,) is the standard deviation of E; , = {Ek jr.;n | T € L;}, the sample made
of the end-of-execution times of all tasks whose results are used by the n'* instance of
task 7;. If more than one task has to maximise the consistency of its input data possibly

with different weights for each task, the criterion becomes :

C =) ¢ - (10)

TET

Other possible criteria are the minimising of the average/worst-case response time or the

maximising of the average/worst-case laxity. Note that one can easily build an optimisation

criterion which is a tradeoff between several criteria. Because the criterion can be evaluated

through simulation, it is also possible to consider much more "fine grained" criteria, such as

to "maximise the freshness of input data X; produced by task A after #; units of execution

and consumed by task B after ¢> units of execution".

3.3.3 Crossover Operator

Crossover applies to couples of mates that are selected with a probability function of their

fitness. This point is crucial since in natural selection, it is assumed that best genitors will

create better young. The technique for choosing the couple of mates, denoted by C; and Cs,

whose principle is described in [46], uses a roulette wheel with slots sized according to fitness :

1. Consider the nb chromosomes composing the population in any order C1,C5, ... Chp.

2. Compute S = Zyil fitness(C}), the sum of chromosomes’ fitness for the whole popula-

tion.
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3. Generate randomly a real number « € [0, 1].
4. Select one chromosome as follows :

e If the fitness criterion has to be maximised, take C; such that :

Z;;ll fitness(C}) Z;:l fitness(C;)
S Ka< T
S

With ¢ = nb, the inequality on the right becomes <.

e If the fitness criterion has to be minimised, find the maximum fitness of the popu-

lation maz;; = max{1l < ¢ < nb | fitness(C;)}, and take C; such that :

Zi.;ll (maz — fitness(Cj)) Zi.zl(maa: — fitness(Cj))
J <a S J
nb-mazsi — S nb-mazxsy — S

The inequality on the left becomes < with i = 1.
5. Go to step 3 if the two mates have not been selected yet.

Once two mates Cp and C; have been selected, we propose to apply a 2 point crossover
operator inspired from the Partially Mapped X (PMX) operator proposed by Goldberg and

Lingle for the travelling salesman problem [25]. The crossover of individuals C and C; creates

one offspring C> as follows :
1. Choose randomly two integers a1, s such that 1 < a1 < a2 < n.

2. crossover applies between genes a1 and as as follows :
for i := a1 to a» do
begin
if 0prio (Co, %) = not_fixed then
Cs[i].prio := random(Cy[i].prio, C1[i].prio, 0.5);
C5[i].6prio := not_fixed,;
else
Cs[i].prio := Co[i].prio;
Cs[i].0prio = fixed,;
fi
if 0,01(Co,?) = not_ fixed then
C5[i].pol := random(Cy[i].pol, C1[i].pol, 0.5);
C5[i].0po1 1= not_fixed;
end
else
Csli).pol := Coli].pol;
C1i).0p0r = fixed;

=2
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Where random(a, b, ) is a function returning value a with probability « and value b

with a probability 1 — .

3. Genes C2[1]..C2[a; — 1] are all taken uniquely from parent Cp or uniquely from parent

C1 with a probability 0.5.

4. Genes Caaz + 1]..C3[n] are all taken uniquely from parent Cp or uniquely from parent

C1 with a probability 0.5.

5. "Repair" chromosome C3 if invariants 1,2 or 3 are not verified. The predominance is
given to the newly created genes, located between a; and a» in chromosome Cb, over

existing ones. This step ensures that offspring Cs is a possible solution.

3.3.4 Mutation Operator

To avoid the problem of degeneracy that occurs when always mating individuals of a same
population, a mutation step takes place after the crossovers. The individuals to which the
mutation operator applies are chosen randomly in the population of solutions, only the best
solution is excluded from mutation. Once a chromosome C' is selected, the mutation operator

makes one gene evolve as follows :

1. repeat
1 := random(1, n);
until (0,,i0(C, %) = not_fixed) V (dpoi(C, i) = not_ fixed);
if 6prio(C, 1) = not_ fixed
then C[i].prio := uniform(1, n); /* the new priority is set randomly between 1 and n */
fi
if 0,01(C, i) = not_fixed
then C[i].pol := random(0, 1, 0.5); /* either sched rr or sched fifo */
fi

Where uniform(a, b) is a function returning a uniform random number between a and b.

2. Repair chromosome C' if invariants 1,2 or 3 are not verified. In the same way as in the

crossover operator, the predominance is given to the modified gene over existing ones.

3.3.5 Creation of the initial population

This is a crucial step of the algorithm : in effect, if after a maximum number of successive
attempts (n;,; value), less than the 2 solutions needed for crossover were found, the algorithm
has failed. The application has then to be redesigned, for instance using program slicing
techniques, such as proposed by Gerber and Hong in [22], or, at least partially rewritten to
shorten the code execution time. The initial population is created using Rate Monotonic and

Deadline Monotonic heuristics for setting the priorities as well as using pure chance :
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e Rate Monotonic (RM) heuristic : priorities are set according to the scheme, "the smaller

the period, the higher the priority", scheduling policies are then fixed randomly.

e Deadline Monotonic (DM) heuristic : priorities are set according to the scheme, "the

smaller the deadline, the higher the priority", scheduling policies are then fixed randomly.

e Randomised creation : priorities as well as policies are set randomly.

4 TImplementation and experiments

The approach developed in this paper was implemented through 3 distinct executable programs
written in C-++ : one for the genetic part, one for schedulability analysis® and one for the
simulation. The program implementing the GA calls the schedulability analysis program to
determine whether a possible solution is a feasible one or not (see figure 3). If the solution
is feasible, a simulation is then performed to determine its fitness. Much care was taken for
the implementation of the simulation program because it is the one that requires the most
computation time : it has been written from scratch without the use of any simulation library
and, if enough memory is available, all events of the simulation are pre-computed and stored
in the scheduler.

Since tasks are periodic, interarrival times are constant and the flow of arrivals is non-
ergodic (see [4]). For this reason it is difficult to choose a sufficient length and a sufficient
number of trajectories (because in the general case it can not be assumed that the first instances
of the tasks are released simultaneously) in order to get a satisfactory accuracy in the results
of the simulations. A tradeoff between computation time and accuracy has to be found. We
consider a result sufficiently accurate if other simulations performed in the same condition
give close results. In our experiments, we found that simulating 10 trajectories, each having
the length of 10 LCMs of task periods, produces a satisfactory accuracy and all experiments
of this section were performed using these parameters.

Evaluating the performance of an optimisation algorithm is difficult because the optimal
result is generally not known. To assess the performance of the proposed GA, that will be
denoted by F-GA for "full" GA, its results are compared on the same test cases with the
results produced by a "weaker" version of the algorithm, termed W-GA, that does not possess
mutation and crossover operators. This will help us (1) to determine whether the proposed
GA is efficient compared to a simple randomised search through the solution space and (2)
to quantify the improvement. In the weak version of the algorithm, except for the initial
population for which heuristics are used, new individuals are solely created randomly, its

functioning scheme being :

1. Creation of m;n; possible solutions for the initial population using RM heuristic (1/4

3The program which implements the schedulability analysis is freely available and can be downloaded at
hitp://www.loria.fr/~ nnavet/rts.
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Nini), DM heuristic (1/4 nin;) and pure chance (1/2 nin;). Deletion of non-feasible or
duplicate solutions and evaluation of the fitness of each feasible individual. Let psi.e be

the size of the population which is currently < nin;.

2. Randomised creation of m¢, + M.t new possible solutions. Deletion of the non-feasible
solutions or duplicate ones and evaluation of the fitness value of the rest of them precedes

their incorporation in the population of solutions.

3. If the population is larger than the desired maximum size (psize > Pmaz), Suppression of

the psize — Pmaz weakest members of the population.
4. Go to step 2 if the maximum number of generation is not reached.

All the tests were performed with parameter n;; = 50, mco = 40, Mpmur = 20, and pma = 100,
the number of successive generations being fixed at 100. The simulation program considers
the task execution time to obey the uniform distribution between [C/2,C] where C is the

worst-case execution time taken for the schedulability analysis.

4.1 Performance of the GA on a 20-task problem

The detailed description of the 20 task example problem, as well as the best schedule found,
are given in [44]. The total cpu utilisation is 85.7% and the objective is to minimise the end-of-
execution jitter of tasks 19, 710, 711, T12, T13, T14, T15, T16, T17, T18, T19 and T2, each task possess-
ing the same weight in the criterion (i.e. in equation 6 Vi € {9,10, 11,12, 13, 14, 15,16, 17, 18,19, 20}
®; =1, otherwise ®; = 0). Some a priori constraints are enforced : tasks 71 and 7> must obey
FPP with priority 1 and 2 respectively, tasks 715 and 720 have to be run under the RR policy
at the lowest priority level and task 76 has to be scheduled with priority level 3. The quantum
for RR is set to 2 units of time.

In figure 6, one can observe an important improvement in the mean fitness of the population
up to the 30" generation using the GA with crossover and mutation operators. After this
point, the population converges, this means that all individuals are very similar in term of
fitness and further improvements of the best solution are likely to occur in the event of a
favourable mutation. The convergence of a population at the it" generation can be measured
by the standard deviation of the sample made of the fitness values denoted o; : after the first
generation, oo = 9.75 when 031 = 0.6 and o100 = 0.31.

On the other hand, the mean fitness with W-GA does improve much more slowly, only 9%
improvement after 100 generations compared to 36.1% with the full GA. This clearly indicates
that the genetic operators are far more efficient than a simple randomised search through the
solution space. Finally, the best solution with the full GA, which is described in [44], is 21.44%

better than the one found with W-GA.
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Figure 6: Mean and best fitness evolution through 100 generations on a 20-task problem for F-GA

and W-GA.

Successive Generations

4.2 Performance of the GA on a 30-Task Problem

The detailed description of the 30-task test problem and the best schedule found is given

in [44]. The 30 tasks induce a total cpu utilisation of 82.8% and the objective is to minimise

the end-of-execution jitter of all tasks of the applications with the same weight in the criterion.

Tasks 120 and 721 must be scheduled under RR at the lowest priority level, 713 and 714 have

to obey FPP while 71, m and 73 must be run under FPP with priority 1, 2, 3 respectively.

The quantum for RR is set to 2 units of time.
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From figure 7, we observe that W-GA gives very bad results on the 30-task problem :
in fact, all the solutions of W-GA were found with the heuristics used for the creation of
the initial population. This suggests to us that (1) the proposed heuristics are efficient, and
thus are good starting points for the GA, and (2) that a randomised search is completely
inappropriate when the size of the problem is large. Compared to the 20 task problem, the
speed of population convergence with F-GA becomes logically slower with the increase of the
size of the problem which, in our particular case, means that the bigger the problem, the more
generations needed. On this 30-task problem, F-GA performs 28.1% better than W-GA in
terms of mean fitness and 28.4% better in terms of best fitness.

The approach developed in this study is computationally intensive, for instance the 30-task
example with the chosen parameters requires about 2 days of computation for 100 generations
on a SUN ultra 5 workstation. On the one hand, it is not mandatory to run 100 generations
because the population converges sooner and thus it is very likely that a satisfactory solution
will have been found sooner. On the other hand, it is possible to shorten the computation time
by reducing the simulation time but the results then lose in accuracy and thus in validity. We
point out that such an algorithm has to be executed at the design phase of the system,; it is
clearly inadequate for on-line reconfigurations. Since the computing time can nevertheless raise
a problem, we investigate how to parallelize the GA using the coarse grained* approach (see
[10] for a survey of research on parallel GAs). With the coarse grained parallelization model,
the total population is split into a few subpopulations, each of which evolves on a distinct
processor. The different subpopulations exchange a few individuals from time to time (e.g.
every m generations, each ¢ units of time). This model introduces a migration operator that
is used to send some individuals from one subpopulation to another. Experiments conducted
on the 30 task problem with 2, 4 and 8 sub-populations over the same number of generations
(e.g. 50 generations on 2 distinct processors for the parallelized GA versus 1 population that
evolves over 100 generations for the non-parallelized GA) have shown that the parallelized
GA performs better than the non-parallelized one in terms of mean and best fitness when the
execution time is sufficient to let the different sub-populations of the parallelized GA converge.
In effect, the different subpopulations are likely to explore different regions of the search space
and the migrations between the populations create a source of genetic diversity. This suggests
to us that it is worth considering the use of parallelized GA, even on a uniprocessor computer,
on condition that it executes for a sufficiently long time to let the different sub-populations
converge. The reader should refer to [44] for the full details of the experimentations conducted

with the parallelized version of the GA.

4The "grain size" refers to the ratio of time spent in computation and time spent in communication, coarse
grained corresponds to a high ratio.
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5 Interest of the RR policy for real-time computing

In our opinion, in literature, the RR policy has not been seriously considered for use in the
field of real-time computing. Traditionally the RR policy is considered useful for low priority
processes performing some background computation tasks "when nothing more important is
running" (see [19] pp163). In this section, we argue that RR should not be ruled out a priori
because there are cases where RR is an efficient choice in terms of schedulability as well as for

fine tuning the system.

5.1 RR and schedulability

The possibility of using RR improves the overall schedulability of the system because some
tasks set are not schedulable under FPP alone. Imagine a basic application consisting of two
tasks A and B with periods (denoted T') 15ms and 50ms respectively, with worst-case execution
times (denoted C') 7Tms and 10ms and with deadlines (denoted D) 15ms and 20ms, the quantum
for RR being set to 1ms. It has been shown in [35] that the maximal response time of a task
occurs after a critical instant, defined as a time where all tasks are released simultaneously.
Only this response time needs to be analysed to decide upon feasibility. Figure 8 represents
the scheduling of the two tasks obeying RR at the same priority level starting from a "critical
instant". Usually an RR scheduler is so implemented that the first task queued will gain the
CPU during the first time quantum. Whichever the first task queued, tasks A and B are

schedulable according to RR policy with a time slot being equal to 1ms.

RR Scheduling 1 RR Scheduling 2
task B meets its deadline task B meets its deadline
\ \
task B =|=|=|=|=|=|==|=|£ task B |=||=||=|=||=||=||=||=|£
| \
| |
task A [ F
-_— o . . :- 1 r - task A - o - :— — 1 r -—
1 ! \ H 1 )
----- |-"'|"|"‘\\""' e T B e e o o
0 5 10 Vo150 20 0 5 10 15\ 20

'
'

\

! '

! '

' '

task A meets its deadline task A meets its deadline

\ \
second instance of task A second instance of task A

Figure 8: Task A and B scheduled according to RR.

On the other hand, scheduling according to FPP does not lead to any feasible solution because
the schedule under the Deadline Monotonic priority allocation scheme, which is known to be
optimal with Dy < T}, [34], is not feasible as shown in figure 9.

This small example illustrates the usefulness of the RR policy. Note that in general the
schedulability is improved through the combined use of RR and FPP. To gain an insight into
the efficiency of RR plus FPP, we have generated 2000 task sets of 10 periodic tasks with
deadlines equal to periods which are not feasible under the Rate-Monotonic assignment. This
latter is known [35] to be optimal when deadlines are equal to periods. The periods of all tasks

are randomly taken between 50 and 1000 time units while their execution times are chosen so
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Figure 9: Task A and B scheduled under FPP with priorities given according to the Deadline
Monotonic strategy.

that the total workload lies between 75% and 90%. The system-wide time quantum for RR is
fixed to 2 units of times. We generated a population of 2000 individuals using the heuristics
that are employed for the creation of the initial population of the GA (see Section 3.3.5),
note that in this particular case, because deadlines are equal to periods, the RM heuristic is
equivalent to the DM heuristic. One half of the 2000 individuals was created using the Rate
Monotonic heuristic while the other half was created randomly.
Under these conditions, we found for 15.3% (306 task sets) of the task sets at least one
feasible allocation with both RR and FPP and this is probably an underestimation because
some feasible allocations may have not been found. Preliminary experiments show that this
percentage can be increased if a different quantum may be chosen for each task under RR
because quanta under RR play, to a certain extent, a similar role to priority under FPP.
Notice that in the above discussion context switch overheads were not taken into account.
The RR policy usually induces more context switch overheads than the FPP policy. This
property weakens to a certain extent the ability of RR to produce feasible schedules where
FPP fails. In the small example in Figure 8, task B ends 1ms before its deadline in the worst
case. Thus, as long as the sum of the context switch overheads remains smaller than lms,
task B is feasible. Since 10 RR-cycles are required to execute an instance of task B and since
there are at most 2 context switches per cycle there is a total of at most 20 context switches.
Thus, every context switch must be shorter than 1/20ms=50us. For task A, one finds 1/14ms,
which is a weaker constraint. In this example the constraint on the length of a context switch is
reasonable but it is not possible to give a general conclusion. The use of RR in addition to FPP
improves schedulability to an extent that is difficult to estimate when context-switch overheads
cannot be neglected and this question would need further investigations. A necessary step in
that direction would be to extend the schedulability analysis developed in [38] to take account

of context-switches.
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5.2 RR for the fine tuning of the system

We now aim to show that RR plus FPP assignments are better than just straight FPP for the
fine tuning of the system using the criteria defined in section 3.3.2. For instance, the use of the
RR policy can in some cases be an efficient way of reducing time-skew between observations of
the controlled system (e.g. coming from sensors) that are performed by different tasks without
recourse to a task slicing technique such as described in [31]. Similarly, RR could also reduce

time-skew between task outputs (e.g. commands to actuators).

Computer
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Figure 10: Application structure.

To illustrate this point, imagine a chemical process controlled by one computer (see figure
10). On the computer, two cyclical tasks A (C=4ms, T=12ms, D=12ms) and B (C'=4,
T=12ms, D=12ms) monitor and control the temperature and the pressure respectively. The
reading of the current values is done at the beginning of both tasks and takes less than 1ms.
Temperature and pressure have to evolve over time and the objective of tasks A and B is
to keep their values as near as possible to the optimum in order to accomplish the chemical
reaction. At the end of their execution, after having sent commands to actuators, tasks A
and B place the current temperature and the current pressure value at the disposal of task
C (C=2, T=12ms, D=12ms), scheduled under FPP with a lower priority than tasks A and
B and which runs on the same computer. Task C is responsible for the injection of the right
amount of chemicals in the vessel with regard to the current state (temperature, pressure) of
the chemical reaction provided by tasks A and B.

As illustrated in figure 11, tasks on computer 1 are schedulable both, with A and B obeying
RR at the same priority level (with the slot time being 1ms) or, with FPP. The use of the RR
policy on computer 1, has the advantage that input data of task C is more "consistent" from a
temporal point of view because it was collected at nearer instants in time than with the FPP
scheduling strategy. Task C will thus have a more accurate overview of the current state of the
system which will lead to a better control of the physical process and in this particular case,
the right amount of chemicals will be injected into the vessel possibly gaining a reduction in

costs. The need for temporal consistency between input data is not universal, but, depending
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on the physical process and also depending on the control algorithm, it can be an objective
worth achieving.
temperatureread  pressure read
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Figure 11: Task A and B scheduled according to RR and FPP.

To quantify the improvement brought about by the use of RR for the tuning of the system, a
series of tests was conducted on random task sets composed of 10 to 20 tasks with deadlines
equal to periods and a load varying from 30% to 70%. For a given task set, we ran the
GA with the parameters given in Section 4, once with the restriction of not chosing RR and
once without this restriction. We have restrained ourselves to tasks with constant execution
times in order to avoid interference from the execution time distribution in the value of the
fitness. For the end-of-execution jitter criterion (see Equation 6), card(7)/2 tasks of the task
set 7 were randomly chosen to be taken into account in the criterion. For the freshness and
consistency of input data (see respectively Equation 8 and 10), card(7)/2 tasks consuming
input data are randomly chosen where each of these tasks requires between 1 and card(T)/2
number of input data which is in turn produced by randomly selected tasks. Whatever the
criterion, each selected task 7; has been given the same weight (i.e. ®; = 1) in the calculation

of the criterion.
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Figure 12: Improvement of fitness through the use of RR.

For each criterion, 100 random task sets were considered and as can been seen in Figure 12,
allowing the use of RR has improved the fitness of the best individual of the population in

36% of the test cases for the end-of-execution jitter, 68% for the freshness of input data and
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71% for the consistency of input data.

6 Concluding remarks and future works

In the field of real-time computing, schedulability analysis has been extensively studied. How-
ever, the question of choosing the best among several feasible solutions for a particular appli-
cation has not been thoroughly addressed. If several feasible solutions exist, then it is possible
to consider additional criteria. In this study, we propose a genetic algorithm to best set the
scheduling of tasks according to a chosen criterion such as the minimising of end-of-execution
jitter or the maximising of the freshness or the consistency of a set of input data. The pro-
posed GA, which has proven to be efficient in the experiments of section 4, makes use of the
schedulability analysis, as well as simulation because of the stochastic measurements required
by the fitness criteria.

We chose to focus our analysis on Posix 1003.1b compliant OSs because of the wide avail-
ability of OSs conforming to this standard. We argue for the usefulness of the RR policy
that has been, in our opinion, not sufficiently considered for use in the field of real-time. Our
experiments have shown that the use of RR can improve the schedulability, the consistency
and the freshness of input data as well as the end-of-execution jitter.

We are investigating the possibility to allow non-feasible schedules in the population of
solutions. It would require a measure of the feasibility finer than just yes or no (for instance,
with the taking into account of laxities), which could be integrated into the calculus of fitness
by weighting the criteria with the degree of feasibility. This extension might be efficient, in
particular, for finding feasible schedules at the very start of the GA. Other possible extensions
of this study include the taking into account of shared resources and the extension to the
distributed case. It would be of particular interest to consider Controller Area Network (CAN)
as the communication protocol because Posix1003.1b nodes distributed over CAN represent,
in our opinion, a very effective solution for distributed real-time systems made of off-the-shelf
components. Finally, we think it is interesting to investigate the possibility that the GA gives
some feedback when the algorithm fails, and this in order to help the designer to identify the
bottlenecks of the system. In the medium term, it should be possible to conceive a CASE tool
dedicated to real-time that includes worst-case execution time analysis, for instance using the
work undertaken on gec in [36], as well as an automatic task priority and scheduling policy

allocation strategy such as that proposed in this study.
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e Caption of figure 3: “The genetic operators.”

— Caption of sub-figure 3 (a): “Creation of an offspring through crossover.”

— Caption of sub-figure 3 (b): “Mutation of an existing solution.”
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e Caption of figure 5: “A chromosome C, solution to a n tasks problem.”

e Caption of figure 6: “Mean and best fitness evolution through 100 generations on a

20-task problem for F-GA and W-GA.”

e Caption of figure 7: “Mean and best fitness evolution through 100 generations on a
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o Caption of figure 8: “Task A and B scheduled according to RR.”

e Caption of figure 9: “Task A and B scheduled under FPP with priorities given according

to the Deadline Monotonic strategy.”
e Caption of figure 10: “Application structure.”
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