TIMING VERIFICATION OF REAL-TIME AUTOMOTIVE ETHERNET NETWORKS: WHAT CAN WE EXPECT FROM SIMULATION?

Nicolas NAVET, University of Luxembourg Jan R. SEYLER, Daimler A.G, Mercedes Cars Jörn MIGGE, RealTime-at-Work (RTaW)

Use-cases for Ethernet in vehicles

- Synchronous traffic
- Mixed audio and video data
- MOST like

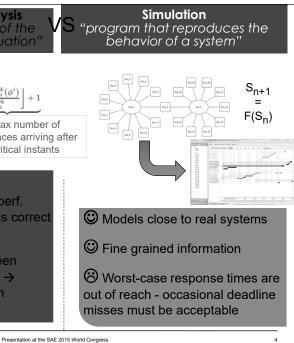
- High data rates
- Continuous streaming
- LVDS like

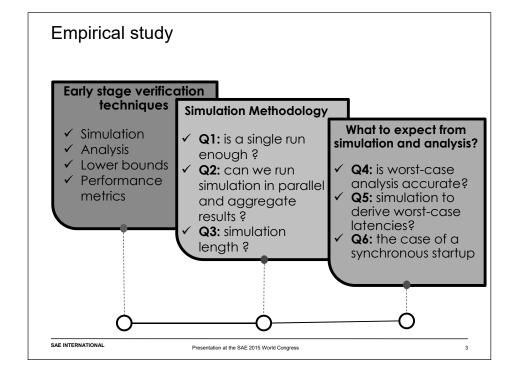
- Interfacing to external tools
- High throughput needed

- communication
- Small and large data payload

Time-sensitive

Cover CAN / Flexray use cases and more




SAE INTERNATIONAL

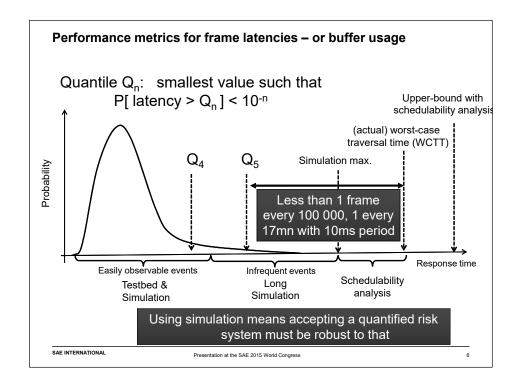
SAF INTERNATIONAL

Presentation at the SAE 2015 World Congress

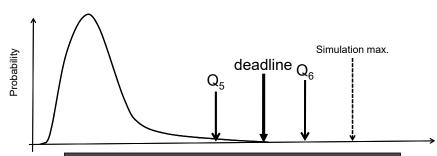
Schedulability analysis "mathematic model of the worst-case possible situation $K_i^k(t) \stackrel{\text{def}}{=}$ max number of instances that can instances arriving after accumulate at critical critical instants instants O Upper bounds on the perf. metrics → safe if model is correct and assumptions met Might be a gap between models and real systems → unpredictably unsafe then

Is schedulability analysis alone is sufficient?

- Pessimism due to conservative and coarse-grained models → overdimensioning of the resources
- 2. Complexity that makes analytic models error prone and hard to validate: black-box software, unproven and published analyses, small user-base, no qualification process, no public benchmarks, ..., main issue: do system meets analysis' assumptions?
- Inability to capture today's complex software and hardware architectures
 → e.g., Socket Adaptor



- > No, except if system conceived with analyzability as a requirement
- ➤ Good practice several techniques & tools for cross-validation


SAE INTERNATIONAL

Presentation at the SAE 2015 World Congress

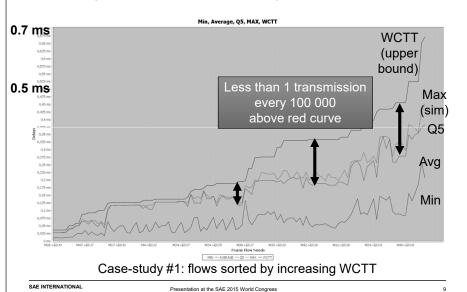
5

Working with quantiles in practice – see [5]

- 1. Identify frame deadline
- 2. Decide the tolerable risk → target quantile
- 3. Simulate "sufficiently" long
- 4. If target quantile value is below deadline, performance objective is met

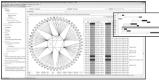
SAE INTERNATIONAL

Presentation at the SAE 2015 World Congress


Quantiles vs average time between deadline misses

	Quantile	One frame every	Mean time to failure Frame period = 10ms	Mean time to failure Frame period = 500ms
	Q3	1 000	10 s	8mn 20s
	Q4	10 000	1mn 40s	≈ 1h 23mn
<	Q5	100 000	≈ 17mn	≈ 13h 53mn
	Q6	1000 000	≈ 2h 46mn	≈ 5d 19h

Warning: successive failures in some cases might be temporally correlated, this can be assessed.


SAE INTERNATIONAL

Performance metrics: illustration on a Daimler prototype network (ADAS, control functions)

Software Toolset and performance evaluation techniques

√RTaW-Pegase - modeling and analysis of switched Ethernet (industrial, automotive, avionics) + CAN (FD) and ARINC

√Higher-level protocols (e.g. Some IP) and

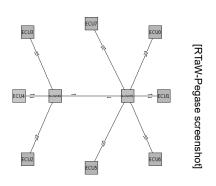
functional behavior can be programmed in CPAL® language [4]

✓ Developed since 2009 in partnership with Onera

✓ Ethernet users include Daimler Cars, Airbus Helicopters and ABB

Performance evaluation techniques

✓ Worst-case Traversal Time (WCTT) analysis - based on state-of-the-art Network-Calculus, all algorithms are published, core proven correct [2]

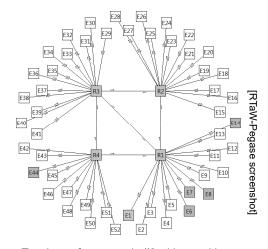

✓ Timing-accurate Simulation – ps resolution, ≈ 4.106 events/sec on a single core (I7 - 3.4Ghz), suited up to (1-106) quantiles

✓ Lower-bounds on the WCTT - "unfavorable scenario" [3]

Presentation at the SAE 2015 World Congress

CASE-STUDY #1 - Mercedes prototype Ethernet network

Presentation at the SAE 2015 World Congress

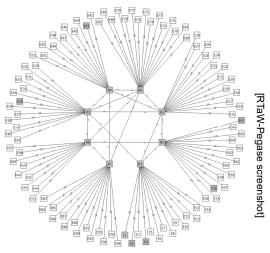


Topology of case-study #1 with a broadcast stream sent by ECU4

SAE INTERNATIONAL

#Nodes	8
#Switches	2
#Maximum	6us
switching	
delay	
#streams	58
#priority	2
levels	
Cumulated	0,33Gbit/s
workload	
Link data	100Mbit/s and
rates	1Gbit/s (2
	links)
Latency	confidential
constraints	
Number of	1 to 7
receivers	(avg: 2.1)
Packet period	0.1 to 320ms
Frame size	51 to
	1450bytes

CASE-STUDY #2 – medium AFDX network



Topology of case-study #2 with a multi-cast stream sent by node E1

52
4
7us
3214
none
0.49Gbit/s
100Mbit/s
2 to 30ms
1 to 42 (avg:
7.1)
2 to 128ms
100 to
1500bytes

SAE INTERNATIONAL

CASE-STUDY #3 – large AFDX network, as used in civil airplanes

#Nodes	104
#Switches	8
#Maximum	7us
switching	
delay	
#streams	5701
#priority	5
levels	
Cumulated	0.97Gbit/s
workload	
Link data	100Mbit/s
rates	
Latency	1 to 30ms
constraints	
Number of	1 to 83 (avg:
receivers	6.2)
Packet period	2 to 128ms
Frame size	100 to
	1500bytes

Topology of case-study #3 with a multi-cast stream sent by node E1

SAE INTERNATIONAL

Presentation at the SAE 2015 World Congress

13

System model and experimental setup

✓ Simulation and analysis models are in line in terms of what they model

✓ Assumptions:

- Streams are strictly periodic and successive packets of a stream are all of the same size
- Nodes are not synchronized on startup, they start to send within 100ms (same results with larger values)
- Communication stack reduced to a queue: FIFO or priority queue
- Store-and-forward communication switches with a sub-10us max. switching delays
- No transmission errors, no packet losses in the switches

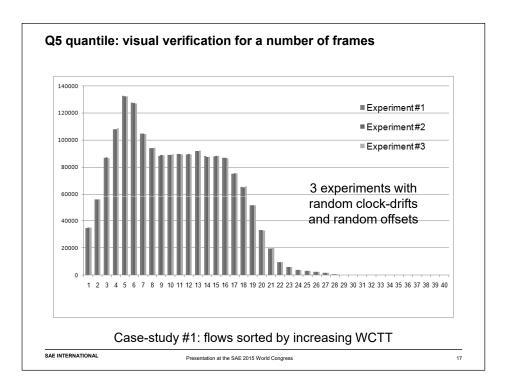
✓ Simulation's specific setup:

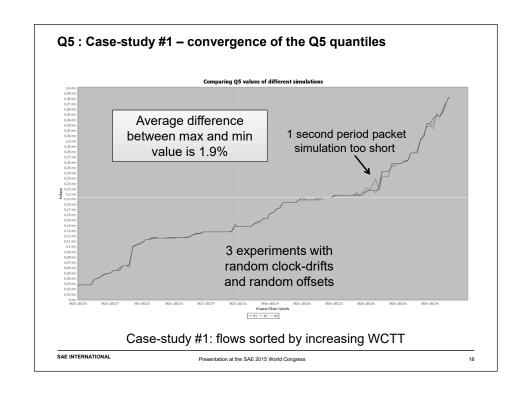
- Nodes' clock drifts: 200ppm (same results with 400ppm)
- Each experiment repeated 10 times (with random offsets and clock drifts)
- Long simulation means at least 2 days of functioning time (samples large enough for Q5 for sub-100ms flows)

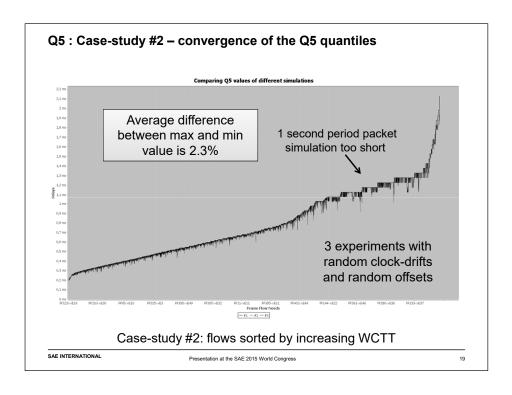
SAE INTERNATIONAL

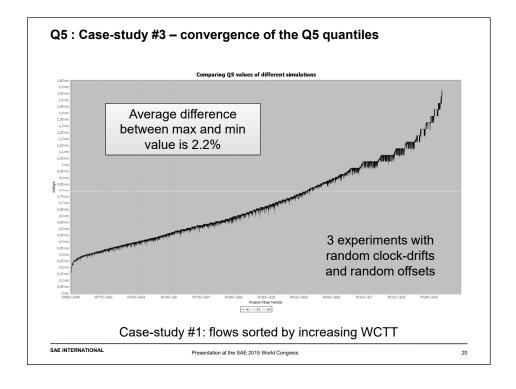
esentation at the SAE 2015 World Congress

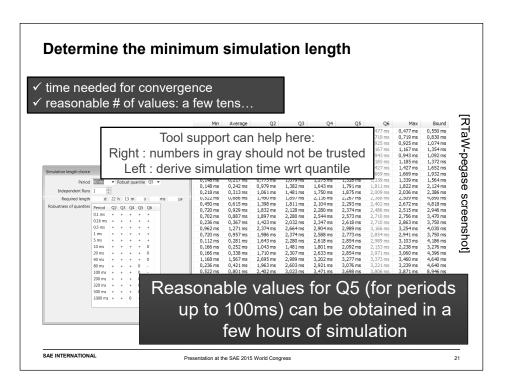
Simulation methodology

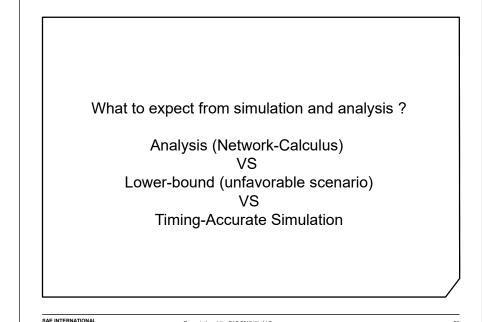

Ergodicity of the simulated system

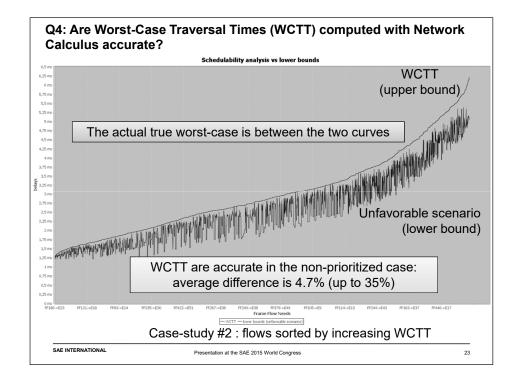

- ✓ Intuitively, "a dynamic system is said to be ergodic if, after a certain time, every trajectory of the system leads the same distribution of the state of the system, called the equilibrium state"
- ✓ Consequences:
 - Q1: a single simulation run enough, initial conditions do not matter
 - Q2: results from simulation run in parallel can be aggregated how long is the transient state that occurs at the start?
- Empirical approach: test if the distributions converge though the Q5 quantiles:
 - Random offsets and random clock drifts
 - Random offsets and fixed clock drifts
 - Fixed offsets and random clock drifts

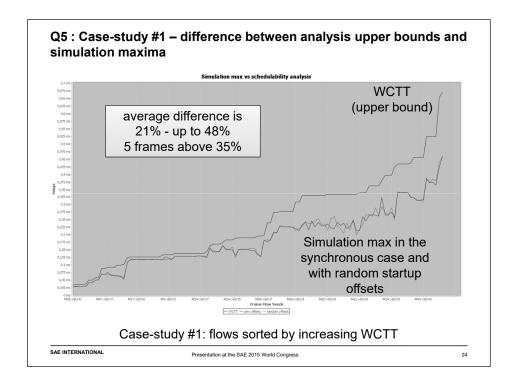

SAE INTERNATIONAL

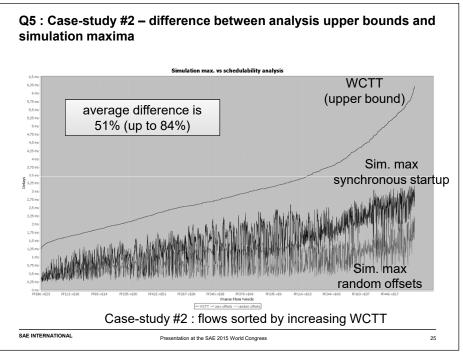

Presentation at the SAE 2015 World Congress

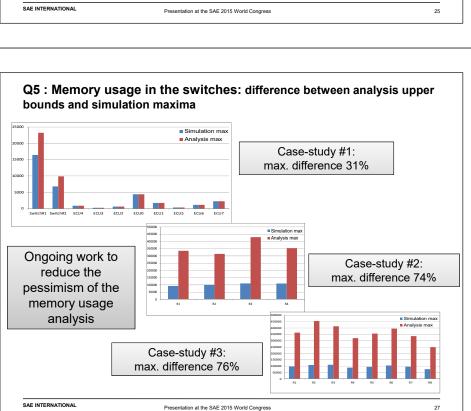

SAE INTERNATIONAL

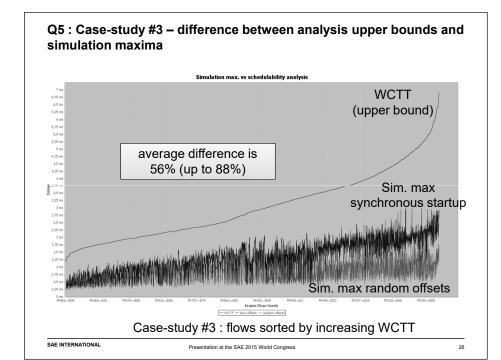


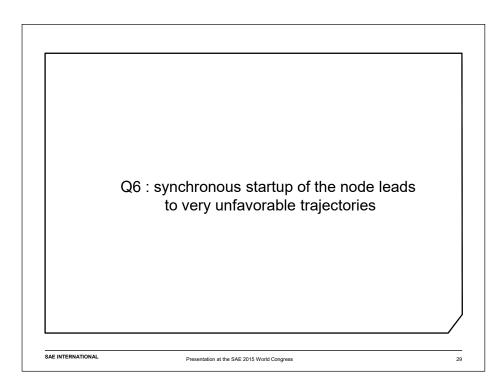


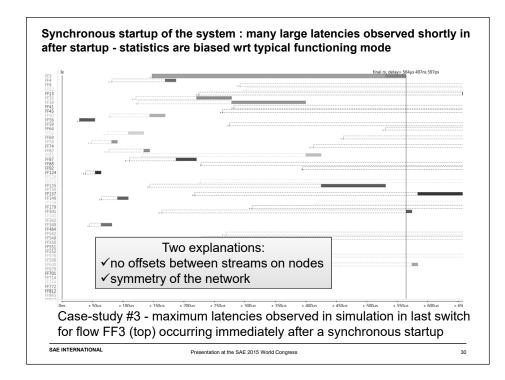


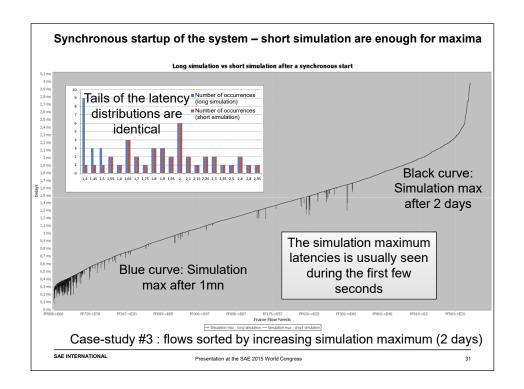


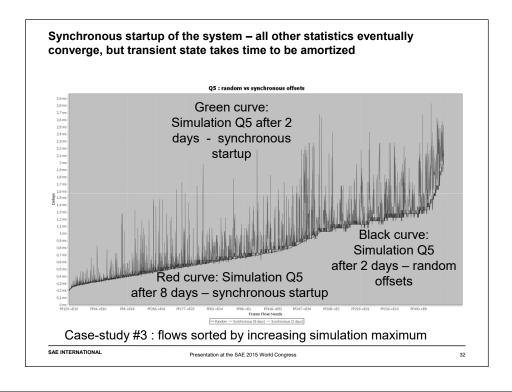







Performance evaluation techniques - Key takeaways


- ✓ State-of-the-start Network-Calculus is an accurate and fast technique for switched Ethernet - can be coupled with other types schedulability analysis for CAN (FD), gateways, ECUs.
- ✓ Deriving lower-bounds with unfavorable scenarios approaches is key to validate correctness and accuracy → more research still needed here
- ✓ Simulation suited to assess with high confidence the performances in a typical functioning mode → worst-case latencies/buffer usage are out of reach - except in small systems


Worst-case latencies are extremely rare events (less than once every 10⁶ transmissions) - if network can be made robust to these cases, then designing with simulation is more effective in terms of resource usage

SAE INTERNATIONAL

Concluding remarks

- √ Timing verification techniques & tools should not be trusted blindly →
 body of good practices should be developed
- ✓ AUTOSAR communication stacks support the numerous automotive communication requirements at the expense of complexity → schedulability analyses cannot capture everything
- ✓ Simulation is well suited to automotive systems that can tolerate
 deadline misses with a controlled risk
- ✓ Today: timing accurate simulation of complete heterogeneous automotive communication architectures
- ✓ Tomorrow: system-level simulation with models of the functional behavior
- ✓ Ergodicity, evidenced here empirically for Ethernet, must be studied theoretically at a the scope of the system

SAE INTERNATIONAL

Presentation at the SAE 2015 World Congre

33

Thank you

Interested in this talk?
You can consult the associated paper published at ERTSS'2016

SAE INTERNATIONAL

Presentation at the SAE 2015 World Congress

Interested in this talk? Please consult the technical report available from www.realtimeatwork.com

- [1] N. Navet, J. Seyler, J. Migge, "Timing verification of real-time automotive Ethernet networks: what can we expect from simulation?", Technical report, 2015.
- [2] E. Mabille, M. Boyer, L. Fejoz, and S. Merz, "Certifying Network Calculus in a Proof Assistant", 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany, 2013.
- [3] H. Bauer, J.-L. Scharbarg, C. Fraboul, "Improving the Worst-Case Delay Analysis of an AFDX Network Using an Optimized Trajectory Approach", IEEE Transactions on Industrial informatics, Vol 6, No. 4, November 2010.
- [4] CPAL the Cyber-Physical Action Language, freely available from http://www.designcps.com, 2015.
- [5] N. Navet, S. Louvart, J. Villanueva, S. Campoy-Martinez, J. Migge, "Timing verification of automotive communication architectures using quantile estimation", Embedded Real-Time Software and Systems (ERTS 2014), Toulouse, France, February 5-7, 2014.

SAE INTERNATIONAL

Presentation at the SAE 2015 World Congress

SAE INTERNATIONAL