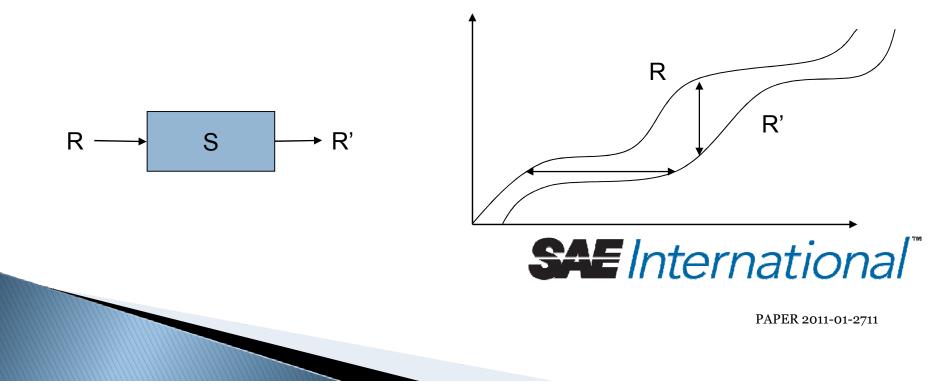


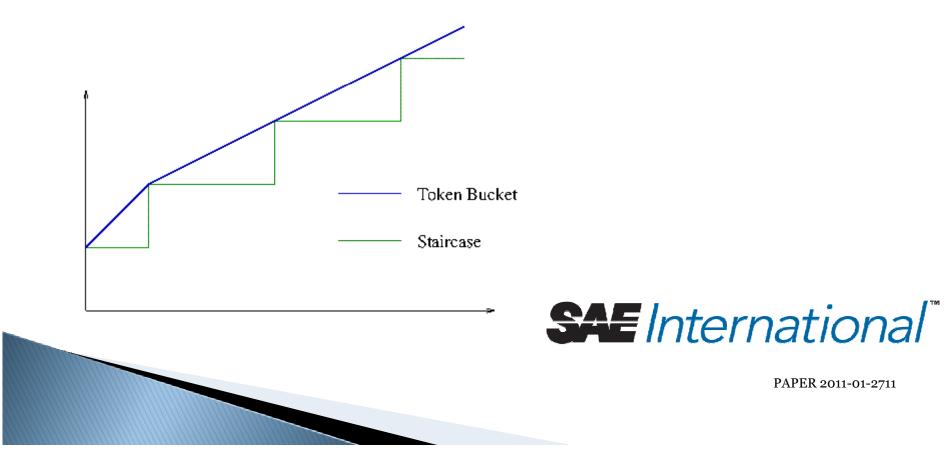
AFDX

- Avionics Systems: communicating real-time systems
- AFDX: <u>Avionics Full DupleX</u> ethernet
 - New avionics backbone
 - Ethernet-based
 - Full Duplex => no collision
- Shared network
 - Indeterminism at the switch level
 - Need for guaranteed bounds
 - (e.g. frame Worst-Case Traversal Times and buffers size)

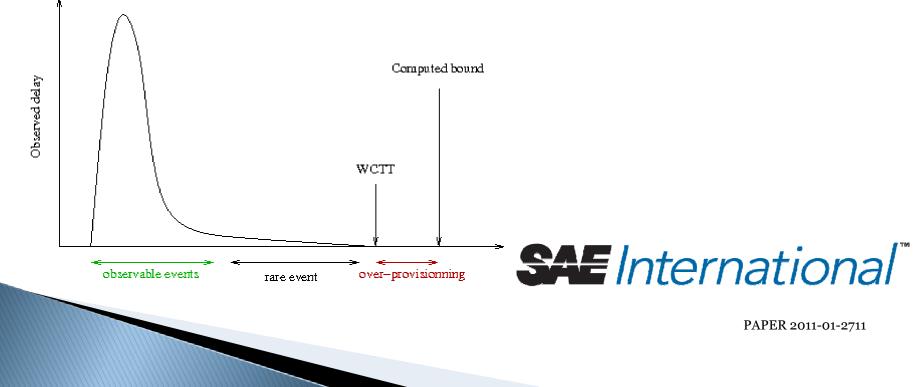


- One LRM = Several functions
- AFDX Network
 - ≻100Mbps
 - Internet protocols
 - ➤Virtual Links
 - ≻Determinism
 - ≻Redundancy
 - ≻Less Cables
 - ➤Flexibility

Network Calculus


- Bound computation method: Network Calculus
- Formal Framework
- Strong background: (min,+) algebra
- Very general and flexible model

Network Calculus Flexibility

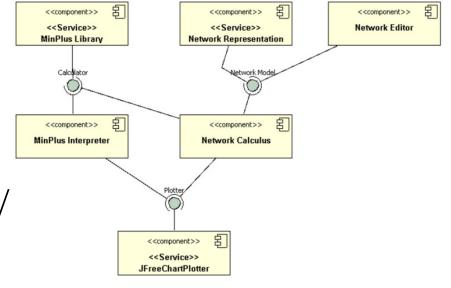

Modeling (periodic+jitter flow)

- Simple constraint : Token bucket
- Tight constraint : Stair Case

Network Calculus and AFDX

- Network calculus used to certify A380 AFDX
- Network calculus bounds never reached
- Challenge: reduce over-approximation => reduce over provisioning

The PEGASE Tool


Requirements :

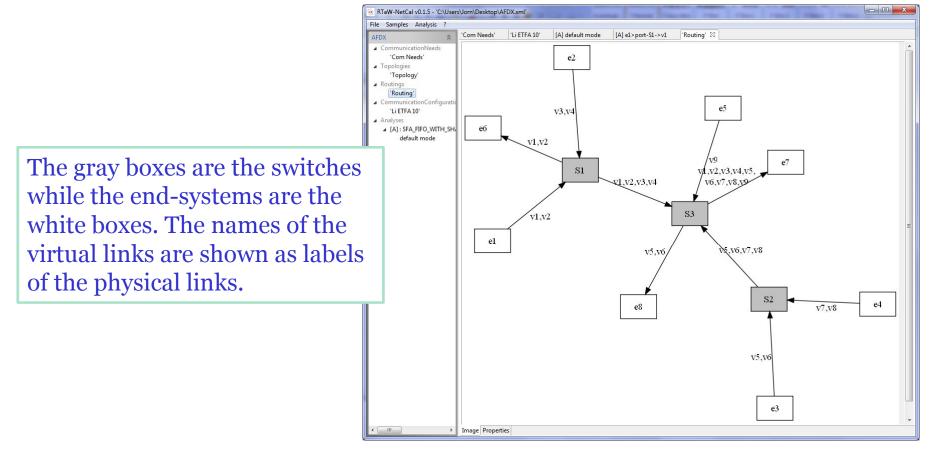
- Accurate results (up to date wrt Network Calculus theory)
- Extendable (to support exploratory works)
- Trustable
- Domain-specific editor
 - (creating networks without being network calculus specialist)
- Containing computation time
- Conflicting requirements
 - \Rightarrow Modular conception

PEGASE Modular Architecture

- Decomposed into components
- Some components has several implementations (tradeoff complexity / accuracy / simplicity)
- Different users different components

Modular Conception example

- Floating point vs Rational Numbers
- Floating point (2.0, 0.666) : Fast, but rounding errors
- Rational numbers (2, 2/3): Exact, but slow
- Function classes
- ICC: Increasing Convex and Concave (Piecewise Linear)
 1292 LOC / Rational and floating point Version
 Coarse modeling: token-bucket constraint
- UPP: Very general class of Piecewise linear function
 - 3416 LOC / Rational only
 - Tight modeling: sporadic messages



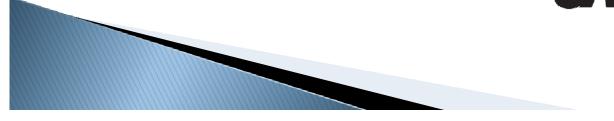
Different modules / different complexities

Module	#Lines of code	Complexity (Cyclomatic)	#Methods	Cplx / #Methods
Fractions	862	268	73	3.67
Double	84	32	24	1.33
ICC	1292	318	74	4.3
UPP	3416	719	106	6.8

The network editor

The results panel

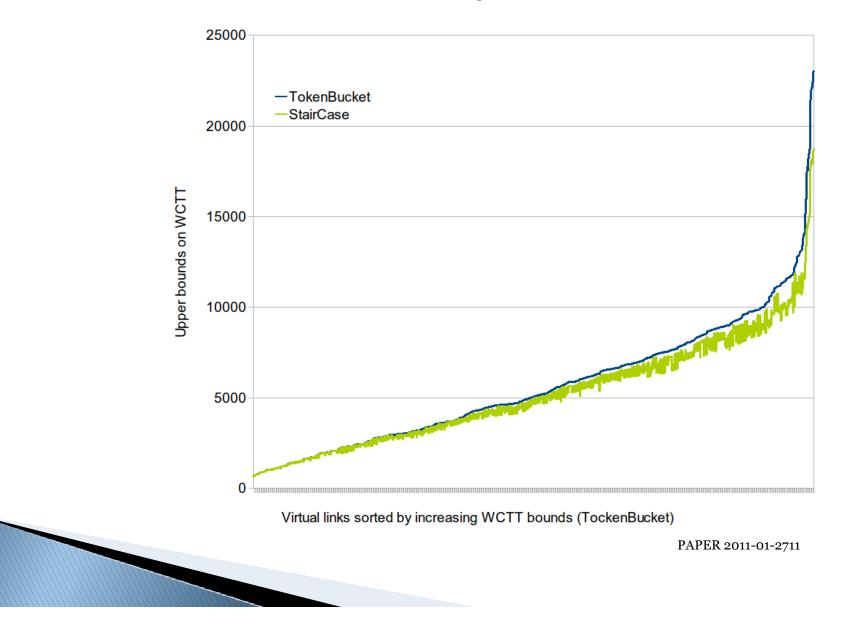
FDX	Com Needs'	Li E	TFA 10' 🖾						
Communication	Need Name*	Name* Li ETFA 10 TrafficMode							-
'Com Needs'	Analysis			SHADING AND DRIO	TTIES StairCar	e, UPP, EXACT_FRACTIO	1		-
Topologies	Analysis	[ed] - bra	A_H O_WHI	_SHAFING_AND_FIGO	unes, stancas	e, orr, exact_machor			
'Topology'	Data Flows								
Routings 'Routing'	Data Flow	P	BAG	Max Frame Size	Sender	Receiver	Constraint	Bound	
Communication	Conf v1	1	8 ms	500 byte	el				
'Li ETFA 10'					e1	еб	120 µs	116 µs	
Analyses					el	e7	860 µs	872 µs	
[A] : SFA_FIFO	v2 v2	1	4 ms	750 byte	e1		100		
					el	еб	120 µs	116 µs	
					e1	e7	900 µs	872 µs	
	v3	0	2 ms	500 byte	e2				=
					e2	e7	700 µs	472 µs	
	∨4	1	16 ms	1000 byte	e2	100	0.2000		
				2000200.00	e2	e7	900 µs	872 µs	
	Dod r	noor	ng tha	t tha time	oonatr	aint cannot	000	002	
	Reu I	neal	lis lila	t the time	consu			892 µs	
	be	be guaranteed for a given virtual link.							
					ಲ	e/	1000 µs	532 µs	
					e3	e8	300 µs	31.2 µs	
	v7	0	32 ms	1000 byte	e4				
					e4	e7	600 µs	532. µs	
	▶ √8	1	16 ms	750 byte	e4				-


Illustration on realistic AFDX system

- 104 End-Systems
- ► 8 Routers
- 4 Priority levels
- 974 Data flows (Virtual links)
- ▶ 6501 Latency constraints
- Periods (min: 2ms / max : 128 ms / av : 60 ms)
- Path Lengths (min : 1 / max : 3 / av : 1.3)
- Constraints (min : 1ms / max : 30 ms / av: 10ms)

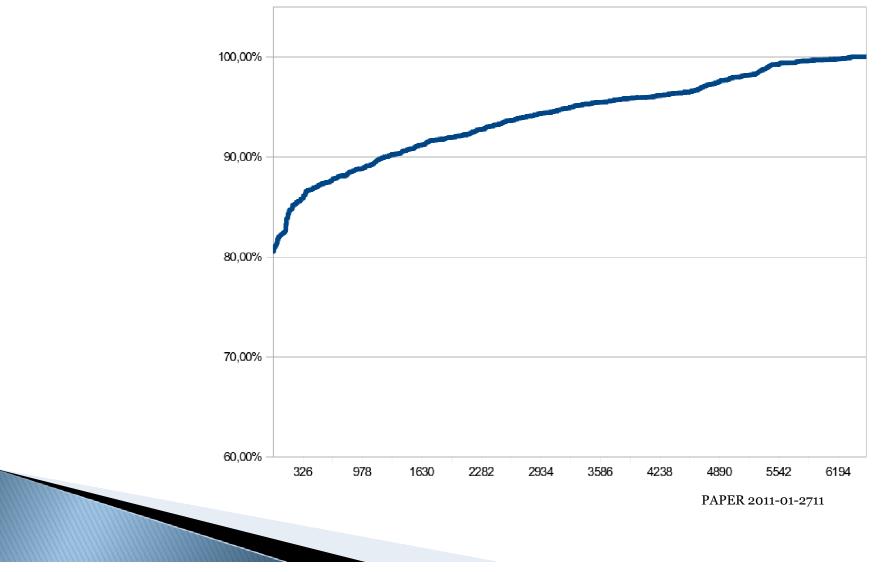
Computation times for different tradeoffs accuracy /computing times

Configuration ID	Constraint Model	Number Type	Function Class	Computation duration
#1	Token Bucket	Float	ICC	2 S
#2	Token Bucket	Rational number	ICC	11 S
#3	Token Bucket	Rational number	UPP	19 S
#4	Stair-case	Rational number	UPP	33 mn
		Ş	A Intel	rnational


WCTT Bounds Results

Warning: actual worst case traversal times (WCTT) is unknown

From [Bauer 2010] : average (WCTT – token bucket) < 13%
Average gain Stair Case vs Token Bucket: 6%



WCTT Bounds Results for token bucket and stair-case models of the input traffic

Gain with stair-case is larger for lowpriority Virtual links

Stair Case vs Token Bucket improvement (normalised)

Synthetic results

By priority

- High priority : no gain (0.38%)
- Low priority: significant gains (12.5%)
- By path length (number of hops)
 - Short path: 5.7%
 - Long path (length 3): 7.3%

Conclusion

- Network calculus is a theory that is:
 - Exciting (for academics)
 - Trustable (strong formal background)
 - Flexible
- with an industrial tool : PEGASE
 - Conceived for network designers with a domain specific editor
 - Customizable performances: accuracy vs computation time
 - Enable to reduce HW resources over-provisioning
 - Increase possibility of system evolution and system re-use



Thank you for your attention

http://sites.onera.fr/pegase

