
Shortest Path Algorithms for Real-Time Scheduling
of FIFO tasks with Minimal Energy Use

Bruno Gaujal and Nicolas Navet

INRIA - Trio Team

and

Cormac Walsh

INRIA - Maxplus Team

We present an algorithm for scheduling a set of non-recurrent tasks (or jobs) with FIFO real-
time constraints so as to minimize the total energy consumed when the tasks are performed
on a dynamically variable voltage processor. Our algorithm runs in linear time and is thus an
improvement over the classical algorithm of Yao et al. in this case. It was inspired by considering
the problem as a shortest path problem. We also propose an algorithm to deal with the case where
the processor has only a limited number of clock frequencies. This algorithm gives the optimum
schedule with the minimum number of speed changes, which is important when the speed switching
overhead cannot be neglected. All our algorithms are linear in the number of tasks if the arrivals
and deadlines are sorted and need O(N log N) time otherwise. These complexities are shown to be
the best possible. Finally, we extend our results to fluid tasks and to non-convex cost functions.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing and scheduling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Real-time systems, low-power design, scheduling, voltage
scaling

1. INTRODUCTION

To provide more functionality and better performance, embedded systems have an
increasing need for computation power. This requires the use of high frequency
electronic components that consume much electrical power. Currently, battery
technology is not progressing sufficiently quickly to keep up with demand. All
battery operated systems, such as PDAs, laptops and mobile phones, would benefit
from better energy efficiency. Reducing energy consumption will not only lead to
a longer operating time but also to a decrease of the weight and space devoted to

Authors’adresses: B. Gaujal, Laboratoire ID, Ensimag - Zirst 51, avenue Jean Kuntzmann, 38330

Montbonnot, France; email: {bruno.gaujal@imag.fr}; N. Navet, LORIA - TRIO Team, Campus
Scientifique - B.P. 239, 54506 Vandoeuvre-lès-Nancy, France; email: {nnavet@loria.fr}; C. Walsh,
INRIA Rocquencourt, Maxplus Team, Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le
Chesnay Cedex, France; email: {walsh@inria.fr}.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0000-0000/2005/0000-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005, Pages 1–27.

2 · Bruno Gaujal et al.

the battery.
Amongst the hardware and software techniques aimed at reducing energy con-

sumption, supply voltage reduction is particularly effective. This is because the
power dissipated in CMOS circuits is proportional to the square of the supply volt-
age. Of course, the reduction in voltage results in a diminution of the processor
speed. In the last few years, variable voltage processors have become available and
much research has been conducted in the field of dynamic voltage scaling. When
real-time constraints are matter of concern, the extent to which the processor speed
can be reduced depends on the tasks’ characteristics (execution time, arrival time,
deadline . . .) and on the underlying scheduling policy.

Power conscious versions of the two classical real-time scheduling policies, namely
EDF (Earliest Deadline First) and FPP (Fixed Priority Pre-emptive), have been
proposed. For FPP, Shin and Shoi in [1999] have presented a simple run-time
strategy that reduces energy consumption. Quan and Hu, in [2001], proposed a
more complex algorithm that was more efficient in their experiments. More recently,
Yun and Kim in [2003] prove that computing the optimal voltage schedule of a set
of tasks under FPP is NP-Hard and they present an approximation scheme running
in polynomial time that gives a schedule as close to optimal as desired.

Yao et al. in [1995] proposed an off-line algorithm, based on EDF, for finding
the optimal voltage schedule of a set of independent tasks. They also presented
some on-line heuristics and gave lower bounds on their efficiency. Other on-line
heuristics based on EDF have been proposed, for instance in [Hong et al. 1998] for
the problem of scheduling both periodic and aperiodic requests.

Other directions of research concern the difference between worst-case execution
times (WCET) and actual execution times. One class of algorithms, known as
“stochastic scheduling” [Lorch and Smith 2001; Gruian 2001; 2002] try to finding a
feasible speed schedule that minimizes the expected energy consumption. A second
class of techniques [Mossè et al. 2000; Shin et al. 2001] is known as “compiler-
assisted scheduling”. Here, tasks are divided into sections for which the WCET is
known and the processor speed is re-computed at the end of each section according
to the difference between the WCET and the time that was actually needed to
execute the task. Other strategies dynamically collect the unused computation time
at the end of each task and share it among the remaining active tasks. Examples of
this approach, called “dynamic reclaiming” include [Aydin et al. 2001] and [Zhang
and Chanson 2002]. Numerous other studies have been conducted on dynamic
voltage scheduling; the reader may refer to [Gruian 2002] for a survey.

The study published in [Yao et al. 1995] remains one of the most important in
the field because it provides, for independent tasks with deadlines, the schedule
that minimizes energy usage while ensuring that deadlines are met. The algorithm
works by identifying the time interval, called the critical interval, over which the
highest processing speed is required. The tasks belonging to this interval (those
with arrival date and deadline inside the interval) are then removed and a sub-
problem is constructed with the remaining tasks.

Our contribution is complimentary to [Yao et al. 1995] in the sense that we first
address the particular case of tasks having FIFO constraints and then propose sev-
eral extensions that work in all cases (non-FIFO). More precisely, the problem of
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 3

finding the minimal voltage schedule is here reduced to a shortest path problem
when the tasks constraints are FIFO. This enables us to provide linear-time algo-
rithms for minimizing the energy consumption of a set of non-recurrent tasks in the
following situations:

(1) when the processor speed range is continuous (the processor can have an arbi-
trary clock frequency up to a certain maximum),

(2) when the number of speeds is discrete,
(3) when the number of speeds is discrete and there is the additional objective of

minimizing the number of speed changes. To the best of our knowledge, in our
context, this problem has not been addressed before.

(4) To show that minimizing the number of speed change actually minimize the
total energy consumption up to a small factor.

Furthermore, extensions 2 and 3 are still valid without the FIFO assumption. An-
other contribution of the paper is a proof that, when there are only a finite number
of speeds, the optimal solution uses at each instant the two speeds that bracket
the ideal speed. This result was established in [Ishihara and Yasuura 1998] for a
single task considered alone but, to the best of our knowledge, was not known for
a global optimization over a set of tasks. We also consider the case of fluid tasks
and non-convex cost functions.

Section 2 describes the system model and studies the problem in the case where
the processor has a continuous range of speeds available. In Section 3 an algorithm
giving the optimal schedule is described and its complexity is shown to be linear. In
Section 4, the problem where the processor has a finite number of speeds is inves-
tigated in three steps: first without minimizing the number of speed changes, then
with this additional objective, and finally by showing that the overhead induced by
speed changes is upper bounded by a small constant. Section 5 is concerned with
fluid tasks and Section 6 with non-convex cost functions.

2. STATEMENT OF THE PROBLEM

We consider a system consisting of a single processor which must execute some
work under real-time constraints. We denote by A(t) the amount of work that has
arrived up to time t and by D(t) the amount that the processor must have executed
by time t. The latter is determined by the deadlines of the tasks. By definition,
the functions A and D are non-decreasing and A(t) ≥ D(t) for all t. With no loss
of generality, one can assume that A(0) = 0 and D(0) = 0. For simplicity, we shall
assume that A and D are piece-wise continuous.

The tasks are characterized by the set {(an, sn, dn)}n=1···N where the quantities
an, sn, dn respectively denote the arrival time, the size (i.e. execution time at
maximum speed) and the deadline of task n. Note that such non-recurrent tasks are
sometimes called “jobs” or even “aperiodic tasks” in the literature. Nevertheless,
we point out that the results presented in this paper can also be applied to periodic
tasks by computing the schedule over a time interval equal to the least common
multiple of all task periods.

For the remainder of this section, we assume that tasks have FIFO real-time
constraints, in other words, ai ≤ aj ⇒ di ≤ dj , ∀i, j. FIFO constraints occur

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

4 · Bruno Gaujal et al.

for instance in data processing in mobile phones or multimedia devices. Also,
many systems do not actually have real-time constraints and deadlines are often
used merely as a convenient way to specify a minimum level of performance in
power-aware systems (the best strategy to minimize energy consumption without
performance requirements would be to stay idle). For such systems, the FIFO
assumption seems quite natural.

The functions A(t) and D(t) are staircase functions (i.e. piece-wise constant,
with a finite number of pieces) :

A(t) =
N∑

i=1

si · 1[ai<t],

D(t) =
N∑

i=1

si · 1[di≤t],

Note that the function A is left-continuous and the function D is right-continuous.
The processor speed u can vary with time over a continuous range from 0 to

1 (after a possible re-scaling). The case where there are only a finite number of
speeds {v1 · · · v�} will be investigated in section 4.

The scheduling problem is to choose at each time t the speed u(t) in such a way
as to complete all tasks before their deadlines while minimizing the total energy
consumption between time 0 and time T , where T is the time horizon of the problem.
The energy consumption of the processor at time t, denoted e(t), is a function of its
speed u(t). In the following we assume that e(t) = g(u(t)) where g is an arbitrary
increasing convex function1 over R+. One can express the problem in mathematical
terms:

Problem 2.1. Find an integrable function u : [0, T] → R such that∫ T

0

g(u(s))ds is minimized, (1)

under the constraints

u(t) ≥ 0 ∀t ∈ [0, T], (2)∫ t

0

u(s)ds ≤ A(t) ∀t ∈ [0, T], (3)∫ t

0

u(s)ds ≥ D(t) ∀t ∈ [0, T]. (4)

A function u satisfying the constraints is called an admissible solution. An admis-
sible u minimizing

∫ T

0
g(u(s))ds is called an optimal solution.

Theorem 2.2. There exists a schedule meeting all timing constraints if and only
of the speed of the processor u(t) satisfies constraints (2), (3) and (4).

1with CMOS technology, typically e(t) ≈ αCu(t)1+2/(γ−1) , where 1 ≤ γ ≤ 3, α ≥ 0, C ≥ 0.
See [Gruian 2002] for more details.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 5

Proof. Tasks are sorted according to their arrival dates and ties are broken
according to the deadlines. We first prove that if u(t) satisfies (2), (3), and (4)
then it is possible to find a schedule meeting the FIFO real-time constraints. Let
U(t) def=

∫ t

0 u(s)ds. We prove that the FIFO policy leads to a feasible schedule.
The proof works by induction on the number of tasks. The property is obvious for
N = 1. We consider the nth task. Let Sk =

∑
i=1..k Si.

We define tn−1 = U−1(Sn−1) where U−1(y) = sup{x |U(x) ≤ y}. By induction,
tasks 1, 2, . . . , n−1 have been successfully scheduled up to time tn−1. One has an ≤
tn−1 since A(an) = Sn−1, U(tn−1) = Sn−1, and, by constraint (3), A(t) ≥ U(t).

We define tn−1 = U∗(Sn−1) where U∗(y) = inf{x |U(x) ≥ y}. One has U(tn) =
Sn (by definition) and D(dn) = Sn (by the FIFO assumption). This implies that
tn ≤ dn using constraint (4).

We schedule task n between times tn−1 and tn (this is possible because tn−1 ≥
an). In this time interval, the processor can execute sn units of work and meets
the real-time constraints since tn ≤ dn.

For the second part of the proof, we assume that tasks are scheduled using
the EDF policy. Between time tn−1 and tn, the task with the earliest deadline
is task n. The scheduling is feasible if and only if tn ≤ dn. Since D() is the
smallest non-decreasing function such that D(dn) = Sn (FIFO property) we have
that U() is larger than D(). Since EDF is optimal for feasibility (see [Jackson
1955] quoted in [Stankovic et al. 1998]) this means that constraint (4) must be
satisfied. Constraint (2) just means that the speed is necessarily non-negative. As
for constraint (3), if U(t) is larger than A(t), this would mean that the processor
has executed more work than has arrived at time t, which is impossible whatever
the scheduling policy.

Note that the problem statement only uses the integral U(t) def=
∫ t

0 u(s)ds of u.
Therefore, the function u need only be defined almost everywhere (a.e.). In the
following, we will identify all functions which are equal a.e. .

The system (A, D) is said to be feasible if, when setting u(t) = 1 (i.e. using the
processor at maximal speed) and when scheduling under EDF, no time constraint
is violated. Actually, in order to take into account the fact that the speed of the
processor cannot exceed 1, one must consider a more constrained problem:

Problem 2.3. Find an integrable function u : [0, T] → R+ such that∫ T

0

g(u(s))ds is minimized,

under the constraints (2), (3), (4) and

u(t) ≤ 1 ∀t ∈ [0, T]. (5)

In the rest of the paper, we focus on the problem of determining the optimal speed
using the equivalence proved in theorem 2.2. We assume that tasks are scheduled
under EDF as in the proof of theorem 2.2.

2.1 Main result

In this section, we characterize the speed functions u that are solutions to Prob-
lem 2.1.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

6 · Bruno Gaujal et al.

Lemma 2.4. If the function g is strictly convex, then the optimal solution of
Problem 2.1 is unique (up to a set of measure zero).

Proof. Consider the set of all integrable functions satisfying constraints (2), (3)
and (4). This set is obviously convex. Assume that two functions u1 and u2, dif-
fering over a set S of positive measure, both minimize the energy:

∫ T

0
g(u1(s))ds =∫ T

0
g(u2(s))ds. Then for all 0 < α < 1 and all t ∈ S, g(αu1(t) + (1 − α)u2(t)) <

αg(u1(t)) + (1 − α)g(u2(t)) by strict convexity of g. Therefore,∫ T

0

g(αu1 + (1 − α)u2)ds <

∫ T

0

αg(u1)ds +
∫ T

0

(1 − α)g(u2)ds

=
∫ T

0

g(u1)ds.

This clearly contradicts the optimality of u1.

Theorem 2.5. If u∗ is the optimal solution of Problem 2.1 where g is strictly
convex and non-decreasing, then u∗ is also an optimal solution of Problem 2.1 for
any other non-decreasing convex function.

Proof. We first consider the case when g is strictly convex. Consider the prob-
lem of minimizing ∫ t1

t0

g(u(t))dt

under U(t0) = U0 and U(t1) = U1 in the absence of any other constraints. This
is an easy problem in the Calculus of Variations. The solution given by Euler’s
formula is d/dt g′(u) = 0, which implies that u is constant. Thus, if (t0, U∗(t0))
and (t1, U∗(t1)) are two points on the optimal path U∗ def=

∫ t

0
u∗(s)ds, then U∗ has

constant slope between these two points if this is feasible. We conclude that U∗

only changes slope at the arrival times {an}1≤n≤N or deadline times {dn}1≤n≤N .
Moreover, when the slope of U∗ decreases we must have U∗(t) = D(t) and t = dn

for some n ∈ {1, . . . , N}. Otherwise, in the neighborhood of t, U∗ should be a
straight line if it were feasible. Likewise, when the slope of U∗ increases we must
have U∗(t) = A(t) and t = an for some n ∈ {1, . . . , N}.

We will show that these properties, together with U∗(0) = 0 and U∗(T) = UT ,
completely determine U∗. Suppose that there are two functions U1 and U2 meeting
the constraints with the properties above such that U1(0) = U2(0) = 0. Let τ be
the first time that U1 and U2 differ. Then the right derivative of U1 (say) at τ is
strictly greater than that of U2. Therefore U1 is strictly greater than U2 at the
next event τ1, be it arrival or deadline. We can have neither U1(τ1) = A(τ1) nor
U2(τ1) = D(τ1). Therefore the slope of U1 cannot decrease at τ1 and that of U2

cannot increase. Proceeding by induction, we get that U1(t) > U2(t) for all t > τ .
Thus U1(T) and U2(T) must differ.

In the following, the solution u∗ defined above will be called “the optimum so-
lution of Problem 2.1”. As will be seen in Section 4, when g is not strictly convex
there may be other solutions equally as good.

Note that g(x) =
√

1 + x2 is strictly convex and increasing, and that
∫ T

0

√
1 + u2(s)ds

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 7

is the length of the curve of the function U(t) def=
∫ t

0
u(s)ds from t = 0 to t = T .

Hence, the optimal solution can be interpreted in the following way. Consider a
road bounded by two concrete walls (the functions A and D). Find the shortest
path from the beginning to the end. This gives U∗.

Corollary 2.6. The optimal solution u∗ of Problem 2.1 satisfies the following
inequality2:
sup0≤t≤T u∗(t) ≤ sup0≤t≤T u(t), for all functions u satisfying constraints (2), (3)
and (4).

Proof. Consider the function gn(x) = xn. The function gn is increasing and
convex over [0, T]. Applying Theorem 2.5, we see that the optimal solution u∗ of
Problem 2.1 with g = gn does not depend on n. Now consider the limit when n
goes to infinity: over the interval [0, T], for all functions u,

lim
n→∞

(∫ T

0

gn(u(s))ds

)1/n

= sup
0≤t≤T

u(t).

This shows that sup0≤t≤T u∗(t) ≤ sup0≤t≤T u(t).

Corollary 2.7. If the system (A, D) is feasible, then the optimal solution u∗ of
Problem 2.1 satisfies u∗(t) ≤ 1, and therefore problems 2.1 and 2.3 are equivalent.

Proof. Consider the case where the system (A, D) is feasible. This means that
their exists a solution u to the set of constraints of Problem 2.3. This solution
is also a solution to the set of constraints of Problem 2.1. Using Corollary 2.6,
the optimal solution of Problem 2.1 satisfies sup0≤t≤T u∗(t) ≤ sup0≤t≤T u(t) ≤ 1.
Therefore u∗ is also an optimal solution to Problem 2.3.

An example illustrating Problem 2.1 is given in Figure 1.

A
D

U∗

T

Fig. 1. The function U∗ is the shortest path from point 0 to T .

2here, the sup operator stands for the essential supremum, since all functions are only defined
almost everywhere.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

8 · Bruno Gaujal et al.

Remark 2.8. Conversely, if the system is not feasible then the optimal solution
of Problem 2.1 will not satisfy u∗ ≤ 1. This provides a feasibility test for a set of
non-recurrent independent tasks with FIFO real-time constraints under EDF.

Actually more precise results can be stated. Since u∗ is piece-wise constant,
one need only focus on the discontinuity points of u∗. We denote these points by
P1, · · · , Pn. They either belong to the graph of A or to the graph of D. The first
point is P1 = (0, 0) and belongs to both A and D. This sequence of points can be
split into sub-sequences of consecutive points belonging to A or to D.

Corollary 2.9. Consider a sub-sequence Pr, · · · , Ps of consecutive discontinu-
ity points of u∗ such that Pr ∈ A, Ps ∈ A and all other points in between belong to
D. Then, between points Pr and Ps, U∗ is the upper concave envelope of the points
Pr, · · · , Ps.

Dually, consider a sub-sequence Pi, · · · , Pj of consecutive discontinuity points of
u∗ such that Pi ∈ D, Pj ∈ D and all other points in between belong to A. Then,
between points Pi and Pj , U∗ is the lower convex envelope of the points Pi, · · · , Pj.

Proof. (Sketch) This is a direct consequence of the fact that U∗ is the shortest
path going through the points P1, · · · , Pn.

The function u∗ can be computed according to the method described in [Yao
et al. 1995] which is based on the computation of critical intervals. This algorithm
is, in the worst case, cubic in the number of tasks N : there are at most N successive
critical intervals and finding a single interval requires O(N2) since for each arrival
there are at most N deadlines to consider. In [Yao et al. 1995], the authors claim
that using “a suitable data structure such as the segment tree” the running time can
be reduced to O(N log2(N)). However, this was never really achieved, as mentioned
in [Yao 2003]. We actually do not know how to obtain an implementation with their
algorithm in less than O(N3) and we are not aware of any paper in the literature
that has addressed the problem with a complexity lower than O(N3).

An interesting consequence of the construction of u∗ as given in [Yao et al. 1995]
is that there exists a schedule with minimal energy consumption such that each task
is executed at a constant speed. This is not obvious with our approach. However,
as seen in the following sections, our approach has other important advantages.
In particular, we will see in section 3 that there exists a linear time algorithm to
compute u∗.

3. A LINEAR-TIME ALGORITHM TO COMPUTE U∗

While Theorem 2.5 characterizes the function u∗, it is not constructive. This section
shows how to construct u∗. We assume that the function A (respectively D) is given
in the form of an ordered list LA := [(a1, A(a1)), · · · (aN , A(aN))] (respectively
LD := [(d1, D(d1)), · · · , (dN , D(dN))]) with a1 < · · · < aN (respectively d1 < · · · <
dN).

We describe an algorithm that constructs the function U∗(t) (as well as u∗(t)) in
the form of an ordered list (x1, y1), · · · , (xK , yK) with x1 < · · · < xK , the function
U∗ being the linear interpolation between these points. This algorithm is similar
to the linear time algorithm to compute the convex hull of a set of ordered points
in the plane (see for example [Boissonnat and Yvinec 1995]).
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 9

The main idea of the algorithm is to construct two piece-wise affine functions V
and W inductively by introducing the points of A and D one by one. Both functions
start with the same initial value at the initial point: V (x0) = W (x0). The function
U∗ and V or W share a common prefix, determined by the algorithm.

step 0. Merge the lists LA and LD into a single list L ordered by the first coor-
dinate.

step 1. Set x0 := (0, 0), V := [(0, 0)], W := [(0, 0)].

hat-angle cup-angle

Fig. 2. A hat-angle and a cup-angle

step 2. Sweep the list L. We keep track of the following data. V = [(V 1
0 , V 2

0), · · · (V 1
k , V 2

k)]
is the lower convex hull of the function A from point x0 to (ai, A(ai)) and W =
[(W 1

0 , W 2
0), · · · , (W 1

m, W 2
m)] is the upper concave hull of the function D from point

x0 to (dj , D(dj)). Here i and j are the number of points in A and D, respectively,
that have been processed so far.

—If the next point in L belongs to A (i.e. it is (ai+1, A(ai+1))),
1. Add it in the last position (k + 1) to the list V := V · (ai+1, D(ai+1)).
2. Update the list V by removing points starting from (V 1

k , V 2
k) and going back-

wards as long they form a hat angle (figure 2).
3. If all intermediate points are removed (the first point (V 1

0 , V 2
0) cannot be

removed), update everything as follows:

� := 0, while V is below W at point W�+1 do � := � + 1 od
U∗ := U∗ · [(W 1

0 W 2
0) · · · (W 1

� , W 2
�)]

W := [(W 1
� , W 2

�), · · · , (W 1
m, W 2

m)]
V := [(W 1

� , W 2
�), (V 1

k+1, V
2
k+1)]

x0 := (W 1
� , W 2

�).

—If the next point belongs to D (i.e. (dj+1, D(dj+1))), do the same as above
switching the role of V and W , replacing the hat-angle test with a cup-angle test
and testing if W is above V instead of V below W .

step 3. Once the last point in L has been swept, update for the last time the list
U∗ by concatenating U∗ and W , in other words U∗ := U∗ · W .

Notice that the algorithm constructs U∗ rather than u∗. However, since U∗ is
piece-wise affine, it is easy to retrieve u∗ from U∗. An example of the algorithm in
action is shown Figures 3, 4, and 5. Figure 3 gives the current position where V
and W have been constructed up to the current point. As shown in Figure 4, the
next point W4 belongs to D, so we update W . The angle at point W3 is a cup-angle

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

10 · Bruno Gaujal et al.

D

V W

A

t

x0W1 V1V2 W2 W3

Fig. 3. The current position.

W3

V

W4
x0 W1 W2

A

W

D

t

V1 V2

Fig. 4. A simple case where only W is updated.

V ′
1x′0 W ′

1

U∗

x0 W1 V1

DA

W
V

t

V2

Fig. 5. A case where x0 is updated.

and so it is removed from the list. The point W2 does not form a cup-angle in the
new W function so no more points need to be removed. In Figure 5, we add yet
another point, V3. We update V . Point V2 forms a hat-angle and is removed. Now
point V1 forms a hat-angle and it too is removed. Since all intermediate points in
V have been removed, we must check whether V remains above W . This is not the
case since both W1 and W2 are above V . Point W3 is below V . This means that
we update the starting points of both V and W to the new starting point x′

0 = W2.
The new V consists of the two points x′

0 and V3, while the new W consists of the
two points x′

0 and W4. The function U∗ is extended from 0 to the new starting
point x′

0 (thicker line in the figure).

Theorem 3.1. The algorithm described above constructs the function u∗ in time
O(N), using a memory size O(N).

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 11

Proof. That the function constructed by the algorithm is actually u∗, the op-
timal solution of Problem 2.1, is a direct consequence of the proof of Theorem 2.5
and Corollary 2.9.

The proof that the algorithm runs in linear time with linear memory size is
similar to the proof for the algorithm computing the convex hull of a set of ordered
points ([Boissonnat and Yvinec 1995]). A simple way of looking at it is to notice
that the total time needed to construct V , W and u∗ is proportional to the number
of changes occurring in the lists V , W and u∗. Since each point in these lists is
eliminated at most once, the number of changes is proportional to N .

Note that if the original data is in the form of a set of tasks rather than staircase
functions A and D, then one needs, as the first step, to create the lists LA and LD,
which may take O(N log(N)) time if the tasks are not already sorted. In any case,
our algorithm is an improvement over the best previously known algorithm, which
was given in [Yao et al. 1995] since this algorithm requires O(N3) time.

3.1 Optimal complexity

In the previous section, we showed that the construction of the function u∗ (in the
form of an ordered list of its points of discontinuity, called L∗ in the following)
requires O(N) elementary operations (comparisons, additions and multiplications)
when the data lists LA and LD are already sorted.

This complexity is optimal because any algorithm would have to at least examine
all the points in the data lists to construct u∗. When the data lists LA and LD are
not already sorted, our algorithm needs a pre-processing phase to sort them before
constructing u∗. The total complexity jumps to O(N log N).

Next, we show that the computation of the list L∗ is at least as complex as sorting
LA ∪ LD. Consider the following problem:
Input: the set of the arrivals (unsorted): {ai, i = 1 · · ·N} and deadlines (unsorted)
{di, i = 1 · · ·N}.
Output: the sorted list L∗.

If the size of the jumps of the cumulative functions A and D are chosen appropri-
ately, then the list L∗ will contain all the discontinuity points of A and D, so that
it is actually equivalent to a sorted list of the set {ai, i = 1 · · ·N}∪{di, i = 1 · · ·N}.
Here is a way to choose the jumps of both A and D. The choice is made iteratively.
Assume that the first i− 1 discontinuity points have been constructed already. We
now look at the ith point pi, which may be a discontinuity of either A or D. There
are two cases.

If the previous point belongs to D (say (dk, D(dk)), then choose the height of the
current point (regardless of whether it belongs to A or to D) to be in the interval
[D(dk), D(dk) + (pi − dk)u∗(dk)].

If the previous point belongs to A (say (aj , A(aj)), then choose the height of the
current point (regardless of the fact that it belongs to A or D) to be greater than
(pi − aj)u∗(aj)].

By choosing the functions A and D in this way, we ensure that all the disconti-
nuity points of A and D are also discontinuity points of u∗, so that they will all be
listed in L∗.

The arithmetic complexity of the computation of U∗ is O(N log(N)) operations
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

12 · Bruno Gaujal et al.

(counting additions, multiplications and comparisons). This also allows us to sort
the initial list LA ∪ LD in the same amount of time. To our knowledge, no algo-
rithm sorting a list of numbers with arithmetic complexity (number of additions,
multiplications and comparisons, regardless of the size of the numbers) lower than
O(N log(N)) has been found so far. This provides strong evidence that our algo-
rithm has the lowest possible arithmetic complexity.

3.2 Experimental results

To evaluate the gain that one can expect in practice with our proposal (which
we call the “shortest path algorithm”) with respect to the Yao et al’s algorithm,
experiments were conducted with both algorithms on the same random sets of FIFO
jobs.

The sets of jobs are created according to the following procedure, which ensures
the FIFO property:

—in a time interval of arbitrary length, choose randomly (uniform distribution) 2N
points where N is the number of jobs,

—the list of points is swept and each point is set at random to be either an arrival
date or a deadline date (care is taken that at each step there are at most as many
deadlines as arrivals and that at the end the number of arrivals is equal to the
number of deadlines),

—the ith arrival date and the ith deadline date form the ith job where the execution
time is a random positive value.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

T
im

e
(s

ec
 -

 lo
g

sc
al

e)

Number of jobs

Yao et al’s algorithm
Shortest Path algorithm

Fig. 6. Computation times of the optimal voltage schedule for the Shortest Path and Yao et al
algorithms on the same random sets of tasks. For each problem size, the result is the average of
20 experiments. Computations were stopped when at least one experiment took more that one
hour of CPU time.

The computation times for each algorithm are shown in Figure 6 for a number
of jobs varying between 1000 and 20000. Each point is the average value of twenty
experiments. Computations were stopped when at least one experiment took more
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 13

than one hour of CPU time on a 2Ghz CPU and no point is drawn in this case. When
the number of jobs becomes greater than 12000, some solutions cannot be found
within one hour of CPU time with Yao et al’s algorithm while problems with several
millions of jobs can be solved in the same amount of time using the Shortest Path
algorithm. Globally, from figure 6, one observes a speedup of around 100 using our
algorithm. It has to be noted that in practice, it is sometimes necessary to handle
very large sets of jobs since the computing of the voltage schedule for periodic tasks
with arbitrary deadlines has to be done for the least common multiple of all task
periods.

4. FINITE NUMBER OF SPEEDS

We now consider the case where the clock frequency of the processor can only take
a finite number of values v1 ≤ · · · ≤ v�. As explained in [Gruian 2002], this is
necessarily the case with today’s technology.

Problem 4.1. Find an integrable function z : [0, T] → R+ such that∫ T

0

g(z(s))ds is minimized,

under Constraints (3) and (4) and the additional constraint

z(t) ∈ {v1, · · · , v�} ∀t ∈ [0, T]. (6)

Let u∗(t) be the solution of Problem 2.1. We assume that v1 ≤ u∗(t) ≤ v� for all
0 ≤ t ≤ T , so that the range of speeds which are available cover the speeds needed
by the processor. This assumption will be satisfied in the typical situation where
v1 = 0 (the processor can idle) and v� = 1 (the processor can use its maximal
speed), and the set of tasks is feasible.

We now describe how to construct an optimal solution z∗ to Problem 4.1. Par-
tition [0, T] into contiguous intervals in such a way that the boundaries between
intervals are the discontinuity points of u∗. There will be M < 2N intervals. On
any one of these intervals, say Ik = [bk, bk+1), u∗ is constant as seen in the proof
of Theorem 2.5; denote its value by u∗

k. Then, u∗
k falls between two possible speeds

for the processor, vi and vi+1. Let αk be defined by u∗
k = αkvi +(1−αk)vi+1 Now,

construct a function over Ik: z∗(t) = vi over [bk, ck) and z∗(t) = vi+1 over [ck, bk+1),
where ck = (1−αk)bk + αkbk+1. It is clear that the function z∗(t) is an admissible
solution for Problem 4.1 since it satisfies all the constraints. Furthermore, as shown
in the following theorem, it is an optimal solution.

Theorem 4.2. Under the foregoing assumptions, the function z∗(t) is an opti-
mal solution to Problem 4.1.

Proof. Using the assumption on the range of the vi’s, for any u such that
v1 ≤ u < v�, there exist i(u) such that vi(u) ≤ u < vi(u)+1. We introduce the
coefficient αu such that u = αuvi(u) +(1−αu)vi(u)+1 and consider the real function

g̃(u) def= αug(vi(u)) + (1 − αu)g(vi(u)+1).
First, note that g̃ is the linear interpolation of g over the points v1, · · · v�. Since

g is convex and non-decreasing, g̃ is also convex and non-decreasing.
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

14 · Bruno Gaujal et al.

g̃

g

v2 v4v3v1

u

Fig. 7. The functions g and its linear interpolation g̃.

The second part of the proof consists of showing that

∫ T

0

g(z∗(s))ds =
∫ T

0

g̃(u∗(s))ds. (7)

Indeed, using the definition of z∗,

∫ T

0

g(z∗(s))ds =
M∑

k=1

∫
Ik

g(z∗(s))ds =
M∑

k=1

(∫ ck

bk

g(vi)ds +
∫ bk+1

ck

g(vi+1)ds

)

=
M∑

k=1

((ck − bk)g(vi) + (bk+1 − ck)g(vi+1)) =
M∑

k=1

(bk+1 − bk)(αkg(vi) + (1 − αk)g(vi+1))

=
M∑

k=1

(bk+1 − bk)g̃(u∗
k) =

∫ T

0

g̃(u∗(s))ds.

Now, let z be any admissible solution to Problem 4.1. So, z(t) ∈ {v1 · · · , v�}.
Since the function g̃ coincides with g over {v1 · · · , v�}, one has

∫ T

0
g(z(s))ds =∫ T

0
g̃(z(s))ds. Now, using the fact that g̃ is increasing and convex,

∫ T

0
g̃(z(s))ds ≥∫ T

0 g̃(u∗(s))ds. Applying equality (7), we see that
∫ T

0 g(z(s))ds ≥ ∫ T

0 g(z∗(s))ds.
This means that the energy use of any admissible solution z is larger than the
energy use of z∗.

Note that z∗ can be constructed in linear time, once the function u∗ is given.
The construction of z∗ is illustrated in Figure 8.

It would be interesting to study the difference in energy consumption between the
continuous case where the speed can range over the whole interval [0, 1] and the case
where it can take only finitely many values. By uniform convergence arguments, it
should be obvious that they coincide in the limit when the maximal gap between
two consecutive admissible speeds goes to zero.
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 15

v1

v2

v3

t

U∗

A

Z∗

D

Fig. 8. The function Z∗ is the integral of an optimal solution z∗ when using 3 speeds, v1, v2 and
v3.

4.1 Minimal number of speed changes

Because the modified cost function g̃ is not strictly convex, there will be many
different optimal solutions to Problem 4.1. Amongst them will be z∗. However, it
may be possible to find an optimal solution with fewer speed changes than z∗. We
now present an algorithm for doing this.

The main idea of the construction is to switch between speeds only when ab-
solutely necessary. Suppose we are at a point (τ, M(τ)) in an interval I in which
z∗ uses only two speeds vh and vh+1. If the current processor speed is vh, then
the latest time we can switch to speed vh+1 while still meeting the constraints is
sup{t : M(τ) + (t − τ)vh ≥ D̃(t)}, where

D̃(t) := max
di≥t

[D(di) − (di − t)vh+1].

Similarly, if the current processor speed is vh+1, then the latest time we can switch
to speed vh and still be guaranteed not to run of out work is sup{t : M(τ) + (t −
τ)vh+1 ≤ Ã(t)}, where

Ã(t) := min
ai≥t

[A(ai) − (ai − t)vh].

The “latest switching” algorithm in the interval I consists of alternating between
the speeds vh and vh+1 in the above manner. We use the following Viterbi algorithm
to construct an optimal function with a minimum number of speed changes:

(1) Partition [0, T] into intervals I1, · · · , Ik such that in each Ii, the function z∗

only uses the same two speeds, say vh, vh+1. We also require that the partition
is the coarsest possible in the sense that the pairs of speeds used by z∗ in
neighboring intervals are different.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

16 · Bruno Gaujal et al.

(2) In each interval Ii = [ai, bi], calculate the following two functions mi and mi

using the “latest switching” algorithm above. The first starts at (ai, z
∗(ai))

with initial speed vh and finishes at (bi, z
∗(bi)). The second has the same start

and finish points but has initial speed vh+1. Record the terminal speed of both
functions and their number of speed changes.

(3) Initialize m and m to be empty. Go through the intervals in reverse order, ap-
plying the following recursive procedure. At each stage, append to mi either m
or m so as to minimize the total number of speed changes, including the possi-
ble speed change at the interface. All the necessary information was calculated
during the previous step. The resulting function is the new m. Similarly, we
append either the old m or m to mi to form the new m.

(4) We end up with two functions m and m. Choose the one with fewer speed
changes and call it m∗.

Remark 4.3. It is straightforward to see that the computation time of m∗ given
z∗ is linear in the number of tasks.

Theorem 4.4. The function m∗ constructed by this algorithm is an optimal
solution to Problem 4.1 and any other optimal solution has at least as many speed
changes.

Proof. First note that M∗ and Z∗ agree at the end points and use the same two
speeds in each interval, Ii. Therefore, they use each speed for the same amount of
time and hence use the same amount of energy. This shows that m∗ is an optimal
solution to Problem 4.1.

Now let m be any feasible function that uses the speeds {vh : 1 ≤ h ≤ l} in
the same proportions as z∗. Let the maximum speed of u∗ lie between vh and
vh+1 and consider the set of those intervals {Ik : k ∈ K} in the partition where
u∗ lies between vh and vh+1. Let Ii = [ai, bi] be one of these intervals. In the
neighboring intervals Ii−1 and Ii+1, we have z∗ < vh. Therefore, Z∗(ai) = A(ai)
and Z∗(bi) = D(bi). Thus ∫ bi

ai

m dt ≥ Z∗(bi) − Z∗(ai). (8)

Let τ ′
i and τi be, respectively, the amount of time m and z∗ spend at speed vh+1

in the interval Ii. Since the total time spend at speed vh+1 is the same for both m
and z∗, if τ ′

i > τi for some i ∈ K then to compensate there must be some j ∈ K

such that τ ′
j < τj . However, since

∫ bi

ai
m dt ≤ τ ′

ivh+1 + (bj − aj − τ ′
j)vh, this would

contradict (8). We conclude that τ ′
i = τi for all i ∈ K and, moreover, that in each

of the intervals {Ik : k ∈ K} the function m uses the same two speeds as z∗ for the
same amount of time. By now removing these intervals and applying an inductive
argument, we may extend the same conclusion to all the intervals in the partition.
This provides a justification for considering each interval separately.

If m is not equal to the function m∗ constructed above, then at some point m
switches between speeds earlier than necessary. If delaying both this switch and the
following switch in the opposite direction, then we obtain another optimal solution
to Problem (4.1) which has the same or fewer speed changes as m. By doing this
each time m switches too early, and choosing the delays appropriately, m may be
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 17

transformed into m∗. Therefore m∗ has the minimum possible number of speed
changes.

A

D

M∗

t

I1 I2 I3

Z∗

Fig. 9. An optimal solution with a minimal number of speed changes.

Figure 9 shows both integrals Z∗ and M∗ in the example given in Figure 8. In
this case, m∗ has four speed changes while z∗ has ten speed changes. The function
m∗ was constructed by using the “latest switching” algorithm. In the interval I3,
the two speeds are v2 and v3, and m∗ uses v2 first. In I2, the two speeds are v1 and
v2. The best solution uses v2 first. Finally in I1, the two speeds are v2 and v3, and
it is best is to start with v3.

Remark 4.5. The construction of z∗ and of m∗ is still valid in the non-FIFO case
if the optimal solution in the continuous speed case is provided (for example, using
the algorithm proposed by Yao et al in [1995]). Indeed, the construction of z∗ and
m∗ can be performed unchanged on each “critical interval”.

4.2 Speed change overheads

The previous section shows how to minimize the number of speed changes while
minimizing the energy consumption. This is applicable as long as the overhead
for each speed change is the same. However, this is typically not the case for real
circuits. The actual dynamics of speed changes depends heavily on the technology
used. Here, we will consider two important cases, synchronous and asynchronous
circuits, and, for each, we will provide upper and lower bounds on the optimal
energy consumption as well as a speed function that remains admissible with the
transition overheads.

4.2.1 Asynchronous circuits. For asynchronous circuits, the speed is changed by
changing the voltage. The time δ required depends only on the DC-DC converter.
Therefore, to switch from v1 to v2, the time required is δ = κ|v1 − v2|, where κ
is some fixed parameter (very small in all cases). In the following, we use δmax

to denote the maximum length of time required for any speed change: δmax =
κ(vmax − vmin). Within the time interval δ, the speed v(t) changes continuously

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

18 · Bruno Gaujal et al.

from v1 to v2 in a smooth manner: v(t) is differentiable with a bounded derivative
v′(t) ≤ C (the changing rate is smaller than some constant C). An example is
shown on Figure 10.

v1

v2e

δ

Fig. 10. Speed changes for asynchronous circuits.

Moreover in the asynchronous case, work continues (at rate v(t)) while the speed
is changing. As for the energy spent during the change, the instantaneous con-
sumption is of the form g(v(t)) + ω. A more precise description of speed changes
in asynchronous circuits can be found for instance in [Es Salhiene et al. 2003].

Call G∗ the optimal total energy consumption taking into account the precise
model for speed changes given above. We denote by n the number of speed changes
of some admissible z and by G(z) =

∫ T

0
g(z(t))dt the total energy consumption of

z with the ideal model for speed changes (immediate changes with no overheads).
Then, with the above notation, one has the following result:

Theorem 4.6. For asynchronous circuits, there exists a small gap e such that
if A(t) − D(t) ≥ e for all t then there exists an admissible speed function y such
that

G(m∗) ≤ G∗ ≤ G(y) + n∗(ωδmax) ≤ G(m∗) + n∗(ωδmax) + hδ2
max (9)

where h is a constant independent of m∗ computed in the proof below and n∗ is the
number of speed changes of m∗.

This theorem deserves several comments. First, since δmax is small, this means
that the ideal computations (z∗ as well as m∗) are very good approximations of the
actual power consumption. Second, if we go to second order, since δmax is small, the
term hδ2

max can be neglected compared with n∗(ωδmax). This means that among
all ideal candidates, the one with the minimal number of speed changes (m∗) is the
best up to first order. This justifies a posteriori the construction of m∗.

Proof. The first inequality in (9) simply says that the ideal model for speed
changes spends less energy than the realistic one because of the overheads ω.

Now, let us construct a smooth version of m∗ (called s(m∗)) where all speed
changes are smoothed as in Figure 10. The total energy consumption of s(m∗) is
less than that of m∗ (shorter path) if one discards the overheads ω. This means
that the energy consumption due to speed changes can be overlooked as long as it
does not jeopardize the feasibility of the solution. In Figure 10, one can see that
there exists a small quantity called e that may prevent the smooth version s(m∗)
from being feasible.
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 19

The computation of e goes along the following lines: since the curvature of s(m∗)
is always larger than some parameter C, using the intermediate value theorem
twice, e ≤ Cδ2/2 for each speed change. Therefore, e ≤ Cδ2

max/2. The goal now
is to construct a new version of m∗, called y, that stays away from the feasibility
constraints by a margin at least equal to e so that its smooth version s(y) will be
feasible. Then, a bound on the consumption of this new speed function will be
derived.

So m∗ can be considered to have two types of speed changes. Critical speed
changes are those occurring close to the borders (M∗(t) ≤ D(t) + e (type D) or
M∗(t) ≥ A(t) − e (type A)). Other speed changes occur far from the feasibility
borders and are not considered in the following. For example, the function m∗ of
Figure 9 has no critical speed changes.

M∗

A(t)

γ3,4
v1

v2

v3

γ1,2

e

Y

v4

Fig. 11. The construction of Y (t)
def
=

R t
0 y(s)ds for asynchronous circuits at one critical speed

change of type A. The construction preserves feasibility if the distance between A(t) and D(t) is
greater than or equal to e for all t.

Figure 11 shows the construction of y around one critical speed change. We focus
on a critical speed change close to the A border. Type D changes are similar and
will be discussed further in the following. This speed change involves four speeds:
v1 ≤ v2 are the speeds of z∗ before the change and v3 ≤ v4 are the speeds after the
change. Note that since the change occurs next to an A border, v1 ≤ v2 ≤ v3 ≤ v4.
The figure shows the case where v2 is used last (just before the change) and v4 is
used first (just after the change). All other cases (v1 used last and/or v3 used first)
are equivalent. This construction modifies the speed durations in the following way:
v1 is used longer (γ12 more), v2 is used less (γ12 less), v4 is used longer (γ34 more)
and v3 is used less (γ34 less). If for all t, A(t) − D(t) ≥ e then Y (t) cannot cross
A(t) or D(t) and the feasibility is ensured.

Direct computation shows that γij = e
vj−vi

. Therefore, the energy surplus caused

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

20 · Bruno Gaujal et al.

by one critical change when y is used instead of m∗ is

δ2C/2
g(v4) − g(v3)

v4 − v3
− g(v2) − g(v1)

v2 − v1
.

If one sums over all critical speed changes, one sees that terms cancel as long as
critical changes are of type A. Doing the same for critical jumps of type D we are
left with only two types of terms (both appearing twice): those from one change of
type A to one of type D and those from one change of type D and one of type A.
Note that those changes do not depend on z∗ but on u∗. The first set (denoted P)
corresponds to time intervals [a, b] such that U∗(a) = A(a) and U∗(b) = D(b), while
the second one (denoted Q) corresponds to time intervals where U∗(a) = D(a) and
U∗(b) = A(b). Denote by vmax and vmax−1 the maximum two speeds used by m∗

and by vmin and vmin+1 the minimum two speeds used by m∗. By construction,
both sets have the same size (up to one) |P − Q| ≤ 1. We get that

G(y) − G(m∗) ≤ δ2
max

(
|P |C

(
g(vmax) − g(vmax−1)

vmax − vmax−1
− g(vmin+1) − g(vmin)

vmin+1 − vmin

))
.

The conclusion follows when one observes that G∗ ≤ G(s(y)) ≤ G(y)+n∗(ωδmax).

4.2.2 The synchronous case. In the synchronous case, the speed changes are not
as simple as in the asynchronous case. The duration of a speed change depends on
the voltage converter as well as on the PLL and is of the form δ = κ|v2 − v1| + φ
where φ may be constant or may depend on the speeds. In general κ is much larger
than in the asynchronous case and φ is of the same order as δ.

Another difference with the asynchronous case is that, for most CPUs, no work
can be done during a speed change (see Figure 12). The energy consumption can
be more complicated to measure but is almost the same as if the processor was
still working at the initial speed, that is, the total energy use is g(v1)δ. Again, see
[Es Salhiene et al. 2003] for more hardware details.

speed change

v1
v2

δ

Fig. 12. The amount of work done during a speed change in a typical synchronous circuit is nil.

Theorem 4.7. For synchronous systems, the optimal energy consumption is
bounded by

G(m∗) ≤ G∗ ≤ G(m∗) +
∑
i∈I

δiv
i
1

g(vi
1) − g(vi

2)
vi
1 − vi

2

,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 21

where I is the set of all speed changes of m∗, and vi
1 ≥ vi

2 are the two speeds of the
change.

Again, we make several comments. One can see that if δi is small, then the ideal
case remains close to the real case, although the difference is larger than in the
asynchronous case. Also, the construction of m∗ for the minimization of the number
of speed changes has the following additional property : each speed change in m∗

can be mapped one to one to a subset of the speed changes in u∗ with the same
speeds. Therefore, the quantity

∑
i∈I δiv

i
1

g(vi
1)−g(vi

2)

vi
1−vi

2
, is smaller for m∗ than for u∗.

This is again a justification of using m∗ instead of z∗ (admittedly, a weaker one
than for the asynchronous case).

Proof. Here, since speed changes do not conserve work, one has to consider all
the speed changes and not just the critical ones. For each speed change i, Figure
13 shows how to choose a speed schedule y conforming to the dynamics of speed
changes.

v2

δ

γ

speed change

Y (t)

Z∗(t)v1

Fig. 13. Changing speeds with the constraints of synchronous circuits.

The increase in power consumption is γg(vi
1)−(γ+δi)g(vi

2) where γ = δiv
i
1/(vi

1−
vi
2). Now, taking into account the fact that during the change, the actual power

consumption also includes δig(vi
1), one gets a total increase of δiv

i
1

g(vi
1)−g(vi

2)

vi
1−vi

2
.

5. EXTENSION 1: FLUID TASKS

In this section, we generalize to arbitrary functions A and D, without assuming
that they are staircase functions with a finite number of discontinuities.

The fluid task model can be used to specify a minimum performance level for
systems in which it is not possible to identify precisely job characteristics. Fluid
tasks can also be used to approximate the curves A(t) and D(t) using a limited
number of parameters when the number of tasks is very large but there are some
regularities. For large sets of tasks, the main problem is not really the computation
time of the voltage schedule which is done off-line (see paragraph 3.2) but more
the amount of memory needed to store the list of successive voltages. Thus, only
approximations of A(t) and D(t) are needed and can be very effective (by providing
small set of successive voltages and a limited increase in energy consumption) when

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

22 · Bruno Gaujal et al.

the system possesses a limited number of work arrival patterns, each corresponding
for instance to a particular functioning mode of the system.

In this section, we consider functions A and D with the following properties:

(F1) A is a non-decreasing left-continuous function, with right and left derivatives
in R ∪ {−∞, +∞}, and A(0) = 0.

(F2) D is a non-decreasing right-continuous function, with right and left derivatives
in R ∪ {−∞, +∞}, D(0) = 0, and D ≥ A.

Problems 2.1 and 2.3 remain unchanged: find an integrable u that minimizes the
energy expended between time 0 and time T , while satisfying constraints (3) and
(4), and respectively (5).

The solution is also the same: the optimal speed schedule for the processor
is given by the shortest path bounded by A and D from point (0, 0) to point
(T, D(T)). This can be seen from the proof of Theorem 2.5, which also works
for arbitrary functions A and D. However, now the optimal solution U∗ is not
necessarily piecewise affine, as shown by the example of Figure 14.

t

0 T

D

A

U∗

Fig. 14. the optimal solution with arbitrary function A and D.

The computational issues become a real concern here because the functions A
and D can be arbitrarily difficult to code in a computer program. However, if
both A and D are piecewise polynomial (of degree k), then the computation of
U∗ only involves solving polynomial equations of degree k. This can be done with
arbitrary precision using symbolic computation tools based on Schur polynomials
and Gröbner basis. Here, the complexity of the algorithm is at least exponential in
k.

5.1 Finite number of speeds

The solution of Problem 4.1 in this more general framework requires taking some
precautions. We need to add technical assumptions on the functions A and D to
ensure that there are admissible solutions. One way of doing this is to assume the
following:
ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 23

(F3) ∃ δ > 0, ∀ 0 ≤ a ≤ b ≤ T,
∫ b

a
A(s) − D(s)ds ≥ δ(b − a),

(F4) there exists a finite number of points x between 0 and T such that A(x) =
D(x), and ∀ x s.t. A(x) = D(x), ∃ v, w ∈ {v1, · · · v�} s.t. dA

dt+
(x) ≥ v, dD

dt+
(x) ≤

v, and dA
dt− (x) ≤ w, dD

dt− (x) ≥ w.

It should be obvious that, if assumption (F4) is not satisfied, then Problem 4.1
does not have any admissible solution since at time 0 any choice of the initial speed
would break either constraint 3 or 4. Assumption (F3) adds the requirement that,
whenever A is strictly above D, there is still enough space between A and D for
some admissible solution using a finite number of speeds.

To find the optimal solution to Problem 4.1, one must construct a finite sequence
of functions, (yn) using the following procedure.

Let x1 = 0, x2, · · · , xh = T be the points where A and D meet. Partition each
interval [xi, xi+1] of length Ti

def= xi+1 − xi into n sub-intervals of the same size
(Ti/n). Here is a way to construct the function yn.

At step k, we construct the function yn(t) over the kth interval, namely Ik
def=

(xi + kTi/n, xi + kTi/n + Ti/n]. There exists h such that

vhTi/n ≤
∫ xi+(k+1)Ti/n

xi+kTi/n

u∗(s)ds ≤ vh+1Ti/n.

There exists αk ∈ (0, 1] such that

u∗
k

def= n/T

∫ xi+(k+1)Ti/n

xi+kTi/n

u∗(s)ds =
(

αkvh + (1 − αk)vh+1

)

At this point, we have two options in defining the function yn over the interval
Ik = (kTi/n, kTi/n+Ti/n]. At least one of them will be admissible when n becomes
large enough.

First alternative: yn(t) = vh over the interval Ik = (xi + kTi/n, xi + αkTi/n +
(1 − αk)(kTi/n + Ti/n)] and yn(t) = vh+1 over the interval (xi + αkTi/n + (1 −
αk)(kTi/n + Ti/n), xi + kTi/n + Ti/n].

Second alternative: yn(t) = vh+1 over the interval (xi + kTi/n, xi + αk(kTi/n +
Ti/n) + (1 − αk)Ti/n] and yn(t) = vh over the interval (xi + αk(kTi/n + Ti/n) +
(1 − αk)Ti/n, xi + kTi/n + Ti/n].

Note that because of assumption F4, this is locally admissible at the extreme
points of the intervals.

Theorem 5.1. The function y∗ = yn is an optimal solution of Problem 4.1 for
the smallest n such that yn is admissible.

Proof. First note that the integral of yn converges to U∗ pointwise as n goes
to infinity. Using assumption F3, this implies that the function yn is admissible if
n is large enough. Second, using the assumption on the range of the ui’s, for any
v1 ≤ u < v�, there exists i(u) such that vi(u) ≤ u < vi(u)+1. We then define the
coefficient αu such that u = αuvi(u) + (1 − αu)vi(u)+1. We use the real function
g̃(u) as in Section 4.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

24 · Bruno Gaujal et al.

The next part of the proof consists of showing that∫ T

0

g(y∗(s))ds =
∫ T

0

g̃(u∗)ds. (10)

Using the definition of y∗,

∫ T

0

g(y∗(s))ds =
N∑

k=0

∫
Ik

g(yn(s))ds

=
N∑

k=0

∫
Ik

g̃(u∗
k)ds.

Since the function g̃ is affine on all the intervals Ik, we have
∑N

k=0

∫
Ik

g̃(u∗
k)ds =∫ T

0
g̃(u∗)ds.

The last part of the proof resembles the proof in the case of discrete tasks. Let
u be any admissible solution of Problem 4.1. Then, u(t) ∈ {v1 · · · , v�}. Since the
function f coincides with g over {v1 · · · , v�}, one has

∫ T

0 g(u(s))ds =
∫ T

0 g̃(u(s))ds.
Now using the fact that f is increasing and convex,

∫ T

0 g̃(u(s))ds ≥ ∫ T

0 g̃(u∗(s))ds.
Finally, using Equality (10) shows that

∫ T

0 g(u(s))ds ≥ ∫ T

0 g(yn(s))ds. This means
that the cost of any admissible solution is larger than the cost of yn.

6. EXTENSION 2: NON-CONVEX ENERGY FUNCTIONS

Here, we consider the case where the function g, which gives the instantaneous
energy consumption, is not convex and increasing. This is occurs for example when
the static power dissipated by the processor is not negligible. In this case, the
typical behavior of g is displayed in Figure 15.

To be as general as possible, we keep the assumption that A and D are fluid
functions satisfying F1, F2, F3, and F4. Everything that follows is also valid for
staircase functions.

pstat

g

frequency

power

Fig. 15. Example of a non-convex energy consumption function. The energy consumed at fre-
quency 0 is not nil due to the static power.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 25

We assume that the function g is semi-continuous but not necessarily convex or
increasing. For technical reasons, we will further assume that g has a finite number
of inflexion points.

In this case, the optimal solution v∗ of Problem 2.1 depends on g. Here is a way
to construct v∗.

The first step is to construct the convex hull h of g. Since g(0) = 0 and g(x) ≥
0, ∀x ≥ 0, we have that h is an increasing convex function. Let C be the set
of points where g and h coincide: C def= {x ∈ R+ s.t. h(x) = g(x)}. Let B be
the complement: B def= {x ∈ R+ s.t. h(x) �= g(x)}. Using the assumption on the
inflexion points of g, the set B is composed of a finite number of intervals. Note
that the function h is affine on B. For each x ∈ B, we define two points in C

surrounding x: m(x) def= inf{s ∈ C s.t. s ≥ x} and m(x) def= sup{s ∈ Cs.t.s ≤ x}.
The second step is to solve Problem 2.1 using h instead of g as the instantaneous

cost. Since h is convex and increasing, we get, as before, the shortest path U∗

bounded by A and D.
The third step is to construct a set of functions, vn, n ∈ N as follows.

If u∗(t) ∈ C, then vn(t) = u∗(t).
If u∗(t) ∈ B, then there exists an interval I, containing t and maximal for inclusion,
over which u∗ ∈ [m(u∗(t)), m(u∗(t))]. We partition the interval I into n sub-
intervals, each of size |I|/n. In each such interval, say [t1, t2), the average value of
u∗ over this interval is μ

def= 1
t2−t1

∫ t2
t1

u∗(t)dt and the coefficient α
def= μ−m(μ)

m(μ)−m(μ) .
Now, vn(t) = m(μ) over [t1, t1 + (1 − α)(t2 − t1)) and vn(t) = m(μ) over [t1 + (1 −
α)(t2 − t1), t2).

The final step is to take v∗(t) = vn(t) ∀t ∈ [0, T], for some n large enough that
v∗(t) is admissible.

Theorem 6.1. The function v∗ is the optimal solution to Problem 2.1.

Proof. (sketch) The proof is similar to the proof given in Section 5.1. The
first thing to notice is that, since the intervals used to define the functions vn get
smaller and smaller, the integrals of these functions converge point-wise towards
U∗(t) as n grows. Therefore since A > D, there exists a finite n such that vn

satisfies constraints 3 and 4 and so is admissible.
The second key point in the proof is to notice that , since h is affine over B,∫ t2

t1
h(vn)dt = h(μ)(t2 − t1). By integrating over the entire time range, we see that

∫ T

0

h(v∗)dt =
∫ T

0

h(u∗)dt. (11)

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

26 · Bruno Gaujal et al.

To finish the proof, take u any admissible solution for problem 2.1.∫ T

0

g(u(t))dt ≥
∫ T

0

h(u(t))dt, (12)

≥
∫ T

0

h(u∗(t))dt, (13)

=
∫ T

0

h(v∗(t))dt, (14)

=
∫ T

0

g(v∗(t))dt. (15)

Inequality (12) comes from the fact that g ≥ h; inequality (13) comes from the
fact that u∗ is the optimal solution for the convex cost h; equality (14) is the same
as (11); and Equality (15) comes from the fact that v∗(t) ∈ C for all t and that
g = h over C.

6.1 Finite set of speeds

The case where the processor can only take a finite number of speeds {v1, · · · , v�} is
much easier to handle. First, construct the convex hull h of the finite set of points
{(v1, g(v1)), · · · , (v�, g(v�))}. Then remove all the speeds which do not belong to
the convex hull from the set of allowed speeds. Finally, solve Problem 4.1 as in
Section 4 with the reduced set of speeds. This gives the optimal solution.

7. CONCLUSION

In this study, we presented a new approach to determine the optimal speed schedule
of a set of independent tasks subject to FIFO real-time constraints. The immedi-
ate advantage of our proposal is that it can be implemented in linear time if the
functions A and D are given, in O(N log(N)) otherwise. The algorithm works both
when the range of possible speeds is continuous and when it is discrete. In the
latter case, we provide an algorithm that ensures the minimum number of speed
changes and thus minimizes the speed changing overhead. The results have been
extended to fluid tasks and non-convex cost functions.

It has been shown that, in the context of this study, the problem of minimizing
energy consumption is equivalent to a shortest path problem. This observation may
lead to some new advances in the field of dynamic voltage scaling.

We are currently investigating the on-line case with probabilistic assumptions
on the workload arrival. Two distinct objectives are considered: minimizing the
expected energy consumption and minimizing the worst-case energy consumption.

REFERENCES

Aydin, H., R., M., Mossè, D., and P., M.-A. 2001. Dynamic and agressive scheduling techniques
for power aware real-time systems. In Real-Time Systems Symposium. 95–105.

Boissonnat, J. and Yvinec, M. 1995. Géométrie Algorithmique. Ediscience International.

Es Salhiene, M., Fesquet, L., and Renaudin, M. 2003. Adaptation dynamique de la puissance
des systèmes embarqués: les systèmes asynchrones surclassent les systèmes synchrones. In
journées d’études Faible Tension - Faible Consommation (FTFC’03). 51–58.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

Shortest Path Algorithms for Minimizing Energy Use · 27

Gruian, F. 2001. On energy reduction in hard real-time systems containing tasks with stochastic

execution times. In IEEE Workshop on Power Management for Real-Time and Embedded
Systems. 11–16.

Gruian, F. 2002. Energy-centric scheduling for real-time systems. Ph.D. thesis, Lund Institute
of Technology, Sweden.

Hong, I., Potkonjak, M., and Srivastava, M. 1998. On-line scheduling of hard real-time tasks
on variable voltage processor. In International Conference on Computer Design. 653–656.

Ishihara, T. and Yasuura, H. 1998. Voltage scheduling problem for dynamically variable voltage
processors. In International Symposium on Low Power Electronics and Design. 197–202.

Jackson, J. 1955. Scheduling a production line to minimize maximum tardiness. Tech. rep.,
University of California. Report 43.

Lorch, J. and Smith, A. 2001. Improving dynamic voltage scaling algorithms with pace. In
ACM SIGMETRICS 2001 Conference. 50–61.

Mossè, D., Aydin, H., Childers, B., and Melhem, R. 2000. Compiler-assisted dynamic power-
aware scheduling for real-time applications. In Workshop on Compiler and Operating Systems
for Low-Power.

Quan, G. and Hu, X. 2001. Energy efficient fixed-priority scheduling for real-time systems on
variable voltage processors. In Design Automation Conference. 828–833.

Shin, D., Kim, J., and Lee, S. 2001. Intra-task voltage scheduling for low-energy hard real-time
applications. IEEE Design & Test of Computers 18, 2, 20–30.

Shin, Y. and Choi, K. 1999. Power conscious fixed priority scheduling for hard real-time systems.
In Design Automation Conference. 134–139.

Stankovic, J., Spuri, M., Ramamritham, K., and Buttazo, G. 1998. Deadline Scheduling for
Real-Time Systems: EDF and Related Algorithms. Kluwer Academic Publisher.

Yao, F. 2003. Complexity of the Yao Demers Shenker algorithm. Private communication.

Yao, F., Demers, A., and Shenker, S. 1995. A scheduling model for reduced CPU energy. In
Proceedings of lEEE Annual Foundations of Computer Science. 374–382.

Yun, H.-S. and Kim, J. 2003. On energy-optimal voltage scheduling for fixed-priority hard real-
time systems. ACM Transactions on Embedded Computing Systems 2, 3 (Aug.), 393–430.

Zhang, F. and Chanson, S. 2002. Processor voltage scheduling for real-time tasks with non-
preemptible sections. In Real-Time Systems Symposium. 235–245.

Received November 2003; revised April 2004; accepted September 2004

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 4, November 2005.

