In-Vehicle Networking: a Survey and Look Forward

Nicolas Navet

Workshop on Specialized Networks, ETFA09, Palma, Spain - 25/09/2009

Complexity Mastered

Outline

- Architecture of Automotive Embedded Systems
 - What they look like example of BMW
 - Constraints in their design case at Volvo
 - Need for optimizing resource usage (ECU, networks)
- The Autosar Communication Stack
- 3. Automotive Networks
 - Time-Triggered versus Event-Triggered
 - Controller Area Network at high loads
 - FlexRay concepts and performances

Architecture of Automotive Electrical and Electronics (E/E) Systems

Electronics is the driving force of innovation

- 90% of new functions use software
- Electronics: 40% of total costs
- Huge complexity: 70 ECUs,
 2500 signals, 6 networks,
 multi-layered run-time environment
 (AUTOSAR), multi-source software,
 multi-core CPUs, etc

Strong costs, safety, reliability, time-to-market, reusability, legal constraints!

BMW 7 Series networking architecture [10]

- ZGW = central gateway
- 3 CAN buses
- 1 FlexRay Bus
- 1 MOST bus
- Several LIN Buses (not shown here)
- Ethernet is used for uploading code/parameters (End of Line)

Picture from [10]

BMW 7 Series architecture – wiring harness [10]

27Millions "variants"

Each wiring harness is tailored to the options

Picture from [10]

There are many non-technical issues in the design of E/E architecture

The case at Volvo in [2]:

- Influence of E/E architecture wrt to business value?
 lacks long term strategy
- Lack of background in E/E at management level often mechanical background
- Lack of clear strategy between in-house and externalized developments
- Technical parameters are regarded as less important than cost for supplier / components selection
- Vehicle Family Management: How to share architecture and sub-systems between several brands/models with different constraints/objectives?
- Sub-optimal solutions for each component / function
- Legal / regulatory constraints

Architectural decisions often:

- ✓ lack well-accepted process
- ✓ are made on experience /
 gut feeling (poor tool
 support)

Proliferation of ECUs raises problems!

Lexus LS430 has more than 100 ECUs [wardsauto]

Optimizing the use of networks is becoming an industrial requirement too

Good reasons for optimizing:

- Complexity of the architectures (protocols, wiring, ECUs, gateways, etc.)
- Hardware cost, weight, room, fuel consumption, etc
- Need for incremental design
- Industrial risk and time to master new technologies (e.g. FlexRay)
- Performances (sometimes):
 - a 60% loaded CAN network may be more efficient that two 30% networks interconnected by a gateway
 - Some signals must be transmitted on several networks

10 to 30 % overlapping

Likely upcoming architectures

Fewer ECUs but more powerful

- Multi-core μ-controller
- Multi-source software
- Autosar OS strong protection mechanisms
- Virtualization ?
- ISO2626-2 dependability standard

FlexRay
as backbone
at BWM in a
few years [8]

Backbone:

- High-speed CAN: 500Kbit/s
- FlexRay: 10 Mbit/s
- Ethernet?

Picture from [8]

AUTOSAR Communication Stack

AUTOSAR at a glance - Automotive Open System Architecture

- Industry initiative that is becoming a de-facto standard
- Standardize: architecture (basic software modules inc. communication), methodology and exchange format, application interfaces
- "Cooperate on standards, compete on implementation"

Benefits

- cost savings for legacy features
- quality through reuse and market competition
- focus on real innovation versus basic enablers
- ability to re-allocate a function
- helps to master complexity

Caveat: great complexity and still evolving specifications

AUTOSAR layered architecture: the global picture

Intra- and inter-ECU Communication

MW hides the distribution and the characteristics of the HW platform

Compliance: SW-C must only call entry points in the RTE

AUTOSAR layered architecture: some more details

Picture from [5]

Application Layer

AUTOSAR Runtime Environment (RTE) System Services Memory Services Communication I/O Hardware Complex Services Abstraction **Drivers Onboard Device Memory Hardware** Communication Hardware Abstraction Abstraction Abstraction Microcontroller Drivers **Memory Drivers** Communication I/O Drivers **Drivers** Microcontroller

There are some 50 standardized basic software components (BSW) ...

Picture from [5]

Zoom on the communication services

"Explicit" call to communication services or MW initiative: "implicit" mode

Sending a signal through the CAN communication stack [6]

Picture from [6]

Generation of the "operational" architecture

Picture from [5]

Automotive networks

Event-Triggered vs Time-Triggered Communication

Event-triggered communication

- Transmission on occurrence of events
- Collision resolution on the bus is needed
- Bandwidth efficient but performance degradation at high loads
- Incremental design and latencies computation non-obvious

Ex: CAN

Time-triggered communication

- frames are transmitted at pre-determined points in time
- Synchronization is needed
- Bandwidth not optimized but ...
- Timing constraints are easy to check
- Missing messages are detected asap

Ex: static segment of FlexRay

In practice "best of both world" approaches are needed and used

- Offsets on CAN: impose some fixed desynchronization between streams of messages on an ECU ⇒ less collision, better performances
- 2. FlexRay dynamic segment: reduce waste of bandwidth and increase flexibility
- 3. Upcoming FlexRay V3.0: more flexibility with slot multiplexing also in the static segment

Controller Area Network: a Recap

- Priority bus with non-destructive collision resolution
- Id of the frame is the priority
- At most 8 data bytes per frame

- Data rate up to 1Mbit/s (500kbit/s in practice)
- Normalized by ISO in 1994 defacto standard in vehicles - more than 2 billions controllers produced

Scheduling CAN frames with offsets?!

Principle: desynchronize transmissions to avoid load peaks

Algorithms to decide offsets are based on arithmetical properties of the periods and size of the frame [1]

But task scheduling has to be adapted otherwise data freshness is not much improved ...

Tasks and messages scheduling should be designed jointly...

Offsets Algorithm applied on a typical body network

65 ms

21 ms

Efficiency of offsets some insight

Work = time to transmit the CAN frames sent by the stations

> Almost a straight line, suggests that the algorithm is near-optimal

FlexRay protocol basics

- Typically ST segment: 3 ms and DYN: 2ms
- Frames: up to 254 bytes, size is fixed in the static segment (BMW:16bytes)
- Data rate: between 500kbit/s and 10Mbit/s
- 64 ≠ communication schedules max. (but a slot always belongs to the same station)

FlexRay bus design and configuration

Requirements on FlexRay

- Performance requirements: response times, jitters,
- Incrementality requirements: additional functions or ECUs
- Dependability requirements: fail-silence, babbling idiot, ...
- Platform requirements: platform wide frames (e.g., NM), carry-over of ECUs, etc

Complex Problem

- Mixed of TT and ET scheduling
- Tightly linked with task scheduling
- Large number of parameters (>70)
- AUTOSAR constraints (OS, COM, etc)
- **–** ...

Crucial question : applicative software synchronous or not wrt FlexRay?

- all applicative modules are synchronized with FlexRay global time ?
- all applicative modules are running asynchronously?
- combination of synchronized and asynchronous modules (likely) ?

✓ Optimal solutions probably out of reach but there
are good heuristics, e.g. [11]

FlexRay VS (multi-)CAN [11]

Useful load (signals)	FlexRay	$\sim 2.5 { m Mbit/s}$	FlexRay	m v~10Mbit/s	$1 \mathrm{x~CAN~500Kbit/s}$
Load 1x ($\approx 60 \mathrm{kbit/s}$)		free slots		free slots	ho network load $ ho$ 31%
	\overline{ST}	23	$\overline{\text{ST}}$	100	R without offsets 15.3
	DYN	9	DYN	43	R with offsets 7.8
Load 2x ($\approx 120 \mathrm{kbit/s}$)		free slots		free slots	network load 57%
	\overline{ST}	21	\overline{ST}	98	R without offsets 49.6
	DYN	9	DYN	43	R with offsets 14.9
Load $3x \approx 180 \text{kbit/s}$		free slots		free slots	network load 85%
	\overline{ST}	19	$\overline{\hspace{1em}}$ ST	96	R without offsets 148.5
	DYN	7	DYN	41	R with offsets 79.7
Load 4x ($\approx 240 \mathrm{kbit/s}$)		free slots		free slots	$\begin{array}{c} \text{non-schedulable} \\ \text{2x CAN 500 OK} \end{array}$
	\overline{ST}	19	$\overline{\hspace{1em}}$ ST	96	
	DYN	7	DYN	40	
Load 5x ($\approx 300 \mathrm{kbit/s}$)		free slots		free slots	non-schedulable
	\overline{ST}	15	$\overline{\hspace{1em}}$ ST	92	$2\mathrm{x}~\mathrm{CAN}~500$
	DYN	6	DYN	40	depending on the overlap
Load 10x ($\approx 600 \mathrm{kbit/s}$)		free slots		free slots	
	\overline{ST}	3	$\overline{\text{ST}}$	84	non-schedulable with two CAN buses
	DYN	0	DYN	36	

In our experiments, between 2 and 2.5 MBit/s of data can be transmitted on FlexRay 10Mbit/s

Conclusion

- Automotive MAC protocols are well mastered technologies that respond to the current needs
- Com. systems architectures will change
- AUTOSAR will probably require one or two car generations to replace all what exists
- Dependability will create new needs:
 - Increasing safety-related functions (X-by-Wire)
 - Certification in the context of ISO26262

References

References

Automotive Embedded Systems - General

- [1] N. Navet, F. Simonot-Lion, editors, The Automotive Embedded Systems Handbook, Industrial Information Technology series, CRC Press / Taylor and Francis, ISBN 978-0849380266, December 2008.
- [2] P. Wallin, Axelsson, A Case Study of Issues Related to Automotive E/E System Architecture Development, IEEE International Conference and Workshop on the Engineering of Computer Based Systems, 2008.
- [3] T. Nolte, Hierarchical Scheduling of Complex Embedded Real-Time Systems, Summer School on Real-Time Systems (ETR'09), Paris, 2009.

AUTOSAR

- [4] AUTOSAR layered software architecture, part of release 3.1, V2.2.2.
- [5] AUTOSAR an open standardized software architecture for the automotive industry, Simon Fürst, 1st Autosar Open Conference, 2008.
- [6] Performance of AUTOSAR Basic Software modules in a chassis ECU, HYUNDAI MOTOR Company HYUNDAI & KPIT Cummins, 1st AUTOSAR Open Conference, 2008.
- [7] J. Buczkowski, Keynote address to the AUTOSAR conference, Ford, 1st AUTOSAR Open Conference, 2008.
- [8] T. Thomsen, G. Drenkhan, Ethernet for AUTOSAR, EB Automotive Gmbh, 2008.

FlexRay

- [9] A. Schedl, "Goals and Architecture of FlexRay at BMW", slides presented at the Vector FlexRay Symposium, March 2007.
- [10] H. Kellerman, G. Nemeth, J. Kostelezky, K. Barbehön, F. El-Dwaik, L. Hochmuth, "BMW 7 Series architecture", ATZextra, November 2008.
- [11] M. Grenier, L. Havet, N. Navet, "Configuring the communication on FlexRay: the case of the static segment", Proceedings of ERTS'2008.

Questions / feedback?

Please get in touch at: nicolas.navet@realtimeatwork.com

http://www.realtimeatwork.com

