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Abstract

The use of networks for communications between the Electronic

Control Units (ECU) of a vehicle in production cars dates from the

beginning of the 90s. The speci�c requirements of the di�erent car

domains have led to the development of a large number of automotive

networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This pa-

per �rst introduces the context of in-vehicle embedded systems and, in

particular, the requirements imposed on the communication systems.

Then, a review of the most widely used, as well as the emerging auto-

motive networks is given. Next, the current e�orts of the automotive

industry on middleware technologies which may be of great help in

mastering the heterogeneity, are reviewed, with a special focus on the

proposals of the AUTOSAR consortium. Finally, we highlight future

trends in the development of automotive communication systems.

1 Automotive communication systems: character-

istics and constraints

From point-to-point to multiplexed communications. Since the 1970s,

one observes an exponential increase in the number of electronic systems

that have gradually replaced those that are purely mechanical or hydraulic.
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The growing performance and reliability of hardware components and the

possibilities brought by software technologies enabled implementing com-

plex functions that improve the comfort of the vehicle's occupants as well

as their safety. In particular, one of the main purposes of electronic systems

is to assist the driver to control the vehicle through functions related to the

steering, traction (i.e., control of the driving torque) or braking such as the

ABS (Anti-lock Braking System), ESP (Electronic Stability Program), EPS

(Electric Power Steering), active suspensions or engine control. Another

reason for using electronic systems is to control devices in the body of a ve-

hicle such as lights, wipers, doors, windows and, recently, entertainment and

communication equipments (e.g., radio, DVD, hand-free phones, navigation

systems).

In the early days of automotive electronics, each new function was imple-

mented as a stand-alone Electronic Control Unit (ECU), which is a subsys-

tem composed of a micro-controller and a set of sensors and actuators. This

approach quickly proved to be insu�cient with the need for functions to be

distributed over several ECUs and the need for information exchanges among

functions. For example, the vehicle speed estimated by the engine controller

or by wheel rotation sensors has to be known in order to adapt the steering

e�ort, to control the suspension or simply to choose the right wiping speed.

In today's luxury cars, up to 2500 signals (i.e., elementary information such

as the speed of the vehicle) are exchanged by up to 70 ECUs [1]. Until

the beginning of the 90s, data was exchanged through point-to-point links

between ECUs. However this strategy, which required an amount of com-

munication channels of the order of n2 where n is the number of ECUs (i.e.,

if each node is interconnected with all the others, the number of links grows

in the square of n), was unable to cope with the increasing use of ECUs due

to the problems of weight, cost, complexity and reliability induced by the

wires and the connectors. These issues motivated the use of networks where

the communications are multiplexed over a shared medium, which conse-

quently required de�ning rules - protocols - for managing communications

and, in particular, for granting bus access. It was mentioned in a 1998 press

release (quoted in [31]) that the replacement of a �wiring harness with LANs

in the four doors of a BMW reduced the weight by 15 kilograms�. In the

mid-1980s, the third part supplier Bosch developed Controller Area Network

(CAN) which was �rst integrated in Mercedes production cars in the early
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1990s. Today, it has become the most widely used network in automotive

systems and it is estimated [28] that the number of CAN nodes sold per

year is currently around 400 millions (all application �elds). Other commu-

nication networks, providing di�erent services, are now being integrated in

automotive applications. A description of the major networks is given in

section 2.

Car domains and their evolution As all the functions embedded in

cars do not have the same performance or safety needs, di�erent Quality of

Services (e.g. response time, jitter, bandwidth, redundant communication

channels for tolerating transmission errors, e�ciency of the error detection

mechanisms, etc.) are expected from the communication systems. Typi-

cally, an in-car embedded system is divided into several functional domains

that correspond to di�erent features and constraints (see chapter Françoise

Simonot-Lion). Two of them are concerned speci�cally with real-time control

and safety of the vehicle's behavior: the �powertrain� (i.e. control of engine

and transmission) and the �chassis� (i.e., control of suspension, steering and

braking) domains. The third, the �body�, mostly implements comfort func-

tions. The �telematics� (i.e. integration of wireless communications, vehicle

monitoring systems and location devices), �multimedia� and �Human Ma-

chine Interface� (HMI) domains take advantage of the continuous progress

in the �eld of multimedia and mobile communications. Finally, an emerging

domain is concerned with the safety of the occupant.

The main function of the powertrain domain is controlling the engine.

It is realized through several complex control laws with sampling periods of

a magnitude of some milliseconds (due to the rotation speed of the engine)

and implemented in micro-controllers with high computing power. In order

to cope with the diversity of critical tasks to be treated, multi-tasking is

required and stringent time constraints are imposed on the scheduling of the

tasks. Furthermore, frequent data exchanges with other car domains, such as

the chassis (e.g. ESP, ABS) and the body (e.g. dashboard, climate control),

are required.

The chassis domain gathers functions such as ABS, ESP, ASC (Auto-

matic Stability Control), 4WD (4 Wheel Drive), which control the chassis

components according to steering/braking solicitations and driving condi-

tions (ground surface, wind, etc). Communication requirements for this
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domain are quite similar to those for the powertrain but, because they have

a stronger impact on the vehicle's stability, agility and dynamics, the chas-

sis functions are more critical from a safety standpoint. Furthermore, the

�X-by-Wire� technology, currently used for avionic systems, is now slowly

being introduced to execute steering or braking functions. X-by-Wire is a

generic term referring to the replacement of mechanical or hydraulic systems

by fully electrical/electronic ones, which led and still leads to new design

methods for developing them safely [67] and, in particular, for mastering

the interferences between functions [4]. Chassis and powertrain functions

operate mainly as closed-loop control systems and their implementation is

moving towards a time-triggered approach [56, 30, 49, 46], which facilitates

composability (i.e. ability to integrate individually developed components)

and deterministic real-time behavior of the system.

Dashboard, wipers, lights, doors, windows, seats, mirrors, climate con-

trol are increasingly controlled by software-based systems that make up the

�body� domain. This domain is characterized by numerous functions that

necessitate many exchanges of small pieces of information among themselves.

Not all nodes require a large bandwidth, such as the one o�ered by CAN;

this leads to the design of low-cost networks such as LIN and TTP/A (see

section 2). On these networks, only one node, termed the master, possesses

an accurate clock and drives the communication by polling the other nodes

- the slaves - periodically. The mixture of di�erent communication needs

inside the body domain leads to a hierarchical network architecture where

integrated mechatronic sub-systems based on low-cost networks are inter-

connected through a CAN backbone. The activation of body functions is

mainly triggered by the driver and passengers' solicitations (e.g. opening a

window, locking doors, etc).

Telematics functions are becoming more and more numerous: hand-free

phones, car radio, CD, DVD, in-car navigation systems, rear seat entertain-

ment, remote vehicle diagnostic, etc. These functions require a lot of data

to be exchanged within the vehicle but also with the external world through

the use of wireless technology (see, for instance, [54]). Here, the emphasis

shifts from messages and tasks subject to stringent deadline constraints to

multimedia data streams, bandwidth sharing, multimedia quality of service

where preserving the integrity (i.e., ensuring that information will not be

accidentally or maliciously altered) and con�dentiality of information is cru-
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cial. HMI aims to provide Human Machine Interfaces that are easy to use

and that limit the risk of driver inattention [16].

Electronic-based systems for ensuring the safety of the occupants are

increasingly embedded in vehicles. Examples of such systems are: impact

and roll-over sensors, deployment of airbags and belt pretensioners, tyre

pressure monitoring or Adaptive Cruise Control (or ACC - the car's speed

is adjusted to maintain a safe distance with the car ahead). These functions

form an emerging domain usually referred to as �active and passive safety�.

Di�erent networks for di�erent requirements. The steadily increas-

ing need for bandwidth1 and the diversi�cation of performance, costs and

dependability2 requirements lead to a diversi�cation of the networks used

throughout the car. In 1994, the Society for Automotive Engineers (SAE)

de�ned a classi�cation for automotive communication protocols [60, 59, 11]

based on data transmission speed and functions that are distributed over

the network. Class A networks have a data rate lower than 10 Kbit/s and

are used to transmit simple control data with low-cost technology. They

are mainly integrated in the �body� domain (seat control, door lock, light-

ing, trunk release, rain sensor, etc.). Examples of class A networks are

LIN [52, 33] and TTP/A [21]. Class B networks are dedicated to support-

ing data exchanges between ECUs in order to reduce the number of sensors

by sharing information. They operate from 10 Kbit/s to 125 Kbit/s. The

J1850 [61] and low-speed CAN [23] are the main representations of this class.

Applications that need high speed real-time communications require class C

networks (speed of 125Kbit/s to 1Mbit/s) or class D networks3 (speed over

1Mb/s). Class C networks, such as high-speed CAN [25], are used for the

powertrain and currently for the chassis domains, while class D networks

are devoted to multimedia data (e.g., MOST [36]) and safety critical ap-

plications that need predictability and fault-tolerance (e.g., TTP/C [65] or

FlexRay [10] networks) or serve as gateways between sub-systems (see [58]).

It is common, in today's vehicles, that the electronic architecture include

1For instance, in [4], the average bandwidth needed for the engine and the chassis con-
trol is estimated to reach 1500kbit/s in 2008 while it was 765kbit/s in 2004 and 122kbit/s
in 1994.

2Dependability is usually de�ned as the ability to deliver a service that can justi�ably
be trusted, see [3] for more details.

3Class D is not formally de�ned but it is generally considered that networks over 1Mb/s
belong to class D.
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four di�erent types of networks interconnected by gateways. For example,

the Volvo XC90 [28] embeds up to 40 ECUs interconnected by a LIN bus,

a MOST bus, a low-speed CAN and a high-speed CAN. In the near future,

it is possible that a bus dedicated to Occupant Safety Systems (e.g. airbag

deployment, crash sensing) such as the �Safe-by-Wire plus� [7] will be added.

Event-triggered versus Time-triggered. One of the main objectives

of the design step of an in-vehicle embedded system is to ensure a proper

execution of the vehicle functions, with a pre-de�ned level of safety, in the

normal functioning mode but also when some components fail (e.g., reboot

of an ECU) or when the environment of the vehicle creates perturbations

(e.g., EMI causing frames to be corrupted). Networks play a central role

in maintaining the embedded systems in a �safe� state since most critical

functions are now distributed and need to communicate. Thus, the di�er-

ent communication systems have to be analyzed in regard to this objective;

in particular, messages transmitted on the bus must meet their real-time

constraints, which mainly consist of bounded response times and bounded

jitters.

There are two main paradigms for communications in automotive sys-

tems: time-triggered and event-triggered. Event-triggered means that mes-

sages are transmitted to signal the occurrence of signi�cant events (e.g., a

door has been closed). In this case, the system possesses the ability to take

into account, as quickly as possible, any asynchronous events such as an

alarm. The communication protocol must de�ne a policy to grant access to

the bus in order to avoid collisions; for instance, the strategy used in CAN

(see �2.1.1) is to assign a priority to each frame and to give the bus access to

the highest priority frame. Event-triggered communication is very e�cient

in terms of bandwidth usage since only necessary messages are transmit-

ted. Furthermore, the evolution of the system without redesigning existing

nodes is generally possible which is important in the automotive industry

where incremental design is a usual practice. However, verifying that tem-

poral constraints are met is not obvious and the detection of node failures is

problematic.

When communications are time-triggered, frames are transmitted at pre-

determined points in time, which is well-suited for the periodic transmission

of messages as it it required in distributed control loops. Each frame is sched-
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uled for transmission at one pre-de�ned interval of time, usually termed a

slot, and the schedule repeats itself inde�nitely. This medium access strat-

egy is referred to as TDMA (Time Division Multiple Access). As the frame

scheduling is statically de�ned, the temporal behavior is fully predictable;

thus, it is easy to check whether the timing constraints expressed on data

exchanges are met. Another interesting property of time-triggered protocols

is that missing messages are immediately identi�ed; this can serve to detect,

in a short and bounded amount of time, nodes that are presumably no longer

operational. The �rst negative aspect is the ine�ciency in terms of network

utilization and response times with regard to the transmission of aperiodic

messages (i.e. messages that are not transmitted in a periodic manner). A

second drawback of time-triggered protocols is the lack of �exibility even if

di�erent schedules (corresponding to di�erent functioning modes of the ap-

plication) can be de�ned and switching from one mode to another is possible

at run-time. Finally, the unplanned addition of a new transmitting node on

the network induces changes in the message schedule and, thus, necessitates

the update of all other nodes. TTP/C [65] is a purely time-triggered network

but there are networks, such as TTCAN [27], FTT-CAN [15] and FlexRay,

that can support a combination of both time-triggered and event-triggered

transmissions. This capability to convey both types of tra�c �ts in well

with the automotive context since data for control loops as well as alarms

and events have to be transmitted.

Several comparisons have been done between event-triggered and time-

triggered approaches, the reader can refer to [29, 1, 15] for good starting

points.

2 In-car embedded networks

The di�erent performance requirements throughout a vehicle, as well as com-

petition among companies of the automotive industry, have led to the design

of a large number of communication networks. The aim of this section is to

give a description of the most representative networks for each main domain

of utilization.
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2.1 Priority buses

To ensure at run-time the �freshness�4 of the exchanged data and the timely

delivery of commands to actuators, it is crucial that the Medium Access Con-

trol (MAC) protocol is able to ensure bounded response times of frames. An

e�cient and conceptually simple MAC scheme that possesses this capability

is the granting of bus access according to the priority of the messages (the

reader can refer to [63, 40] and Chapter ThomasNolte for how to compute

bound on response times for priority buses). To this end, each message is

assigned an identi�er, unique to the whole system. This serves two purposes:

giving priority for transmission (the lower the numerical value, the greater

the priority) and allowing message �ltering upon reception. The two main

representatives of such �priority buses� are CAN and J1850.

2.1.1 The CAN network

CAN (Controller Area Network) is without a doubt the most widely used

in-vehicle network. It was designed by Bosch in the mid 80's for multiplexing

communication between ECUs in vehicles and thus for decreasing the overall

wire harness: length of wires and number of dedicated wires (e.g. the number

of wires has been reduced by 40%, from 635 to 370, in the Peugeot 307 that

embeds two CAN buses with regard to the non-multiplexed Peugeot 306 [34]).

Furthermore, it allows to share sensors among ECUs.

CAN on a twisted pair of copper wires became an ISO standard in

1994 [23, 25] and is now a de-facto standard in Europe for data transmis-

sion in automotive applications, due to its low cost, its robustness and the

bounded communication delays (see [28]). In today's car, CAN is used as

an SAE class C network for real-time control in the powertrain and chassis

domains (at 250 or 500KBit/s), but it also serves as an SAE class B network

for the electronics in the body domain, usually at a data rate of 125Kbit/s.

On CAN, data, possibly segmented in several frames, may be transmitted

periodically, aperiodically or on-demand (i.e. client-server paradigm). A

CAN frame is labeled by an identi�er, transmitted within the frame, whose

numerical value determines the frame priority. CAN uses Non-Return-to-

Zero (NRZ) bit representation with a bit stu�ng of length 5. In order not

4The freshness property is veri�ed if data has been produced recently enough to be
safely consumed: the di�erence between the time when data is used and the last production
time must be always smaller than a speci�ed value.
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to lose the bit time (i.e., the time between the emission of two successive

bits of the same frame), stations need to resynchronize periodically and this

procedure requires edges on the signal. Bit stu�ng is an encoding method

that enables resynchronization when using Non-Return-to-Zero (NRZ) bit

representation where the signal level on the bus can remain constant over a

longer period of time (e.g. transmission of '000000..'). Edges are generated

into the outgoing bit stream in such a way to avoid the transmission of

more than a maximum number of consecutive equal-level bits (5 for CAN).

The receiver will apply the inverse procedure and de-stu� the frame. The

standard CAN data frame (CAN 2.0A) can contain up to 8 bytes of data for

an overall size of, at most, 135bits, including all the protocol overheads such

as the stu� bits. The reader interested in the details of the frame format and

the bus access procedure should refer to Chapter ThomasNolte. CAN bus

access arbitration procedure relies on the fact that a sending node monitors

the bus while transmitting. The signal must be able to propagate to the most

remote node and return back before the bit value is decided. This requires the

bit time to be at least twice as long as the propagation delay which limits the

data rate: for instance, 1Mbit/s is feasible on a 40 meter bus at maximum

while 250Kbit/s can be achieved over 250 meters. To alleviate the data

rate limit, and extend the lifespan of CAN further, car manufacturers are

beginning to optimize the bandwidth usage by implementing �tra�c shaping�

strategies that are very bene�cial in terms of response times, this is the

subject of the Chapter MathieuGrenier in this book.

CAN has several mechanisms for error detection. For instance, it is

checked that the CRC transmitted in the frame is identical to the CRC com-

puted at the receiver end, that the structure of the frame is valid and that

no bit-stu�ng error occurred. Each station which detects an error sends

an "error �ag" which is a particular type of frame composed of 6 consec-

utive dominant bits that allows all the stations on the bus to be aware of

the transmission error. The corrupted frame automatically re-enters into the

next arbitration phase, which might lead it to miss its deadline due to the ad-

ditional delay. The error recovery time, de�ned as the time from detecting an

error until the possible start of a new frame, is 17 to 31 bit times. CAN pos-

sesses some fault-con�nement mechanisms aimed at identifying permanent

failures due to hardware dysfunctioning at the level of the micro-controller,

communication controller or physical layer. The scheme is based on error
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counters that are increased and decreased according to particular events

(e.g., successful reception of a frame, reception of a corrupted frame, etc.).

The relevance of the algorithms involved is questionable (see [18]) but the

main drawback is that a node has to diagnose itself, which can lead to the

non-detection of some critical errors. For instance, a faulty oscillator can

cause a node to transmit continuously a dominant bit, which is one manifes-

tation of the �babbling idiot� fault, see Chapter JuanPimentel. Furthermore,

other faults such as the partitioning of the network into several sub-networks

may prevent all nodes from communicating due to bad signal re�ection at

the extremities. Without additional fault-tolerance facilities, CAN is not

suited for safety-critical applications such as future X-by-Wire systems. For

instance, a single node can perturb the functioning of the whole network by

sending messages outside their speci�cation (i.e. length and period of the

frames). Many mechanisms were proposed for increasing the dependability

of CAN-based networks (see Chapter JuanPimentel), but, if each proposal

solves a particular problem, they have not necessarily been conceived to be

combined. Furthermore, the fault-hypotheses used in the design of theses

mechanisms are not necessarily the same and the interactions between them

remain to be studied in a formal way.

The CAN standard only de�nes the physical layer and Data Link layer

(DLL). Several higher level protocols have been proposed, for instance, for

standardizing startup procedures, implementing data segmentation or send-

ing periodic messages (see OSEK/VDX and AUTOSAR in �3). Other higher-

level protocols standardize the content of messages in order to ease the in-

teroperability between ECUs. This is the case for J1939 which is used, for

instance, in Scania's trucks and buses [66].

2.1.2 The VAN network

Vehicle Area Network (VAN, see [24]) is very similar to CAN (e.g., frame

format, data rate) but possesses some additional or di�erent features that

are advantageous from a technical point of view (e.g., no need for bit-stu�ng,

in-frame response: a node being asked for data answers in the same frame

that contained the request). VAN was used for years in production cars by

the French carmaker PSA Peugeot-Citroën in the body domain (e.g, for the

206 model) but, as it was not adopted by the market, it was abandoned in

favor of CAN.
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2.1.3 The J1850 network

The J1850 [61] is an SAE class B priority bus that was adopted in the USA

for communications with non-stringent real-time requirements, such as the

control of body electronics or diagnostics. Two variants of the J1850 are

de�ned: a 10.4Kbit/s single-wire version and 41.6Kbit/s two-wire version.

The trend in new designs seems to be the replacement of J1850 by CAN or

a low-cost network such as LIN (see �2.3.1).

2.2 Time-Triggered networks

Among communication networks, as discussed before, one distinguishes time-

triggered networks where activities are driven by the progress of time and

event-triggered once where activities are driven by the occurrence of events.

Both types of communication have advantages but one considers that, in gen-

eral, dependability is much easier to ensure using a time-triggered bus (refer,

for instance, to [56] for a discussion on this topic). This explains that, cur-

rently, only time-triggered communication systems are being considered for

use in X-by-Wire applications. In this category, multi-access protocols based

on TDMA (Time Division Multiple Access) are particularly well suited; they

provide deterministic access to the medium (the order of the transmissions

is de�ned statically at the design time), and thus bounded response times.

Moreover, their regular message transmissions can be used as "heartbeats"

for detecting station failures. The three TDMA based networks that could

serve as gateways or for supporting safety critical applications are TTP/C

(see [65]), FlexRay (see �2.2.1) and TTCAN (see �2.2.2). FlexRay, which is

backed by the world's automotive industry, is becoming the standard in the

industry and is already used in the BMW X5 model since 2006 (see [58]).

In the following, we choose not to discuss further TTP/C which, to the best

of our knowledge, is no more considered for vehicles but is now used in air-

craft electronic systems. However, the important experience gained over the

years with TTP/C, in particular regarding fault-tolerance features (see [19])

and their formal validation (see Chapter HolgerPfeifer), will certainly be

bene�cial to FlexRay.
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2.2.1 The FlexRay Protocol

A consortium of major companies from the automotive �eld is currently

developing the FlexRay protocol. The core members are BMW, Bosch,

Daimler, General Motors, NXP Semiconductors, Freescale Semiconductor

and Volkswagen. The �rst publicly available speci�cation of the FlexRay

Protocol have been released in 2004, the current version of the speci�ca-

tion [10] is available at http://www.flexray.com.

The FlexRay network is very �exible with regard to topology and trans-

mission support redundancy. It can be con�gured as a bus, a star or multi-

star. It is not mandatory that each station possesses replicated channels nor

a bus guardian, even though this should be the case for critical functions

such as the Steer-by-Wire. At the MAC level, FlexRay de�nes a commu-

nication cycle as the concatenation of a time-triggered (or static) window

and an event triggered (or dynamic) window. In each communication win-

dow, size of which is set statically at design time, two distinct protocols are

applied. The communication cycles are executed periodically. The time-

triggered window uses a TDMA MAC protocol; the main di�erence with

TTP/C is that a station in FlexRay might possess several slots in the time-

triggered window, but the size of all the slots is identical (see Figure 1). In

the event-triggered part of the communication cycle, the protocol is FTDMA

(Flexible Time Division Multiple Access): the time is divided into so-called

mini-slots, each station possesses a given number of mini-slots (not neces-

sarily consecutive) and it can start the transmission of a frame inside each

of its own mini-slots. A mini-slot remains idle if the station has nothing to

transmit which actually induces a loss of bandwidth (see [9] for a discussion

on that topic). An example of a dynamic window is shown in Figure 2: on

channel B, frames have been transmitted in mini-slots n and n + 2 while

mini-slot n + 1 has not been used. It is noteworthy that frame n + 4 is not

received simultaneously on channels A and B since, in the dynamic window,

transmissions are independent in both channels.

The FlexRay MAC protocol is more �exible than the TTP/C MAC since

in the static window nodes are assigned as many slots as necessary (up to

2047 overall) and since the frames are only transmitted if necessary in the dy-

namic part of the communication cycle. In a similar way as with TTP/C, the

structure of the communication cycle is statically stored in the nodes, how-

ever, unlike TTP/C, mode changes with a di�erent communication schedule
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Node B
Static
Slot

NodeD
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Slot

Node C
Static
Slot

Node A
Static
Slot

Node A
Static
Slot

Static Window
TDMA

Node B
Static
Slot

Node A
Static
Slot

Dynamic Window
FTDMA

MiniSlots

Figure 1: Example of a FlexRay communication cycle with 4 nodes A, B, C
and D

Channel A

Channel B

n n+1 n+2

n+2

Frame ID n+1

n

Frame ID n

n+1

Frame ID n+2

n+3

MiniSlot

n+4

Frame ID n+4

n+3

Frame ID n+4

n+5

n+4

n+6

Slot Counter

n+7

Figure 2: Example of message scheduling in the dynamic segment of the
FlexRay communication cycle

for each mode are not possible.

The FlexRay frame consists of 3 parts : the header, the payload segment

containing up to 254 bytes of data and the CRC of 24 bits. The header

of 5 bytes includes the identi�er of the frame and the length of the data

payload. The use of identi�ers allows to move a software component, which

sends a frame X, from one ECU to another ECU without changing anything

in the nodes that consume frame X. It has to be noted that this is no more

possible when signals produced by distinct components are packed into the

same frame for the purpose of saving bandwidth (i.e., which is refer to as

frame-packing or PDU-multiplexing - see [57] for this problem addressed on

CAN).

From the dependability point of view, the FlexRay standard speci�es

solely the bus guardian and the clock synchronization algorithms. Other

features, such as mode management facilities or a membership service, will

have to be implemented in software or hardware layers on top of FlexRay

(see, for instance, [5] for a membership service protocol that could be used

along with FlexRay). This will allow to conceive and implement exactly

the services that are needed with the drawback that correct and e�cient

implementations might be more di�cult to achieve in a layer above the

communication controller.
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In the FlexRay speci�cation, it is argued that the protocol provides scal-

able dependability i.e., the �ability to operate in con�gurations that provide

various degrees of fault tolerance�. Indeed, the protocol allows for mixing

links with single and dual transmission supports on the same network, sub-

networks of nodes without bus-guardians or with di�erent fault-tolerance

capability with regards to clock synchronization, etc. In the automotive

context where critical and non-critical functions will increasingly co-exist

and interoperate, this �exibility can prove to be e�cient in terms of cost

and re-use of existing components if missing fault-tolerance features are pro-

vided in a middleware layer, for instance such as the one currently under

development within the automotive industry project AUTOSAR (see �3.3).

The reader interested in more information about FlexRay can refer to Chap-

ter Bernhard Schätz in this book, and to [50, 20] for how to con�gure the

communication cycle.

2.2.2 The TTCAN protocol

TTCAN (Time Triggered Controller Area Network - see [27]) is a commu-

nication protocol developed by Robert Bosch GmbH on top of the CAN

physical and data-link layers. TTCAN uses the CAN standard but, in addi-

tion, requires that the controllers have the possibility to disable automatic

retransmission of frames upon transmission errors and to provide the upper

layers with the point in time at which the �rst bit of a frame was sent or

received [55]. The bus topology of the network, the characteristics of the

transmission support, the frame format, as well as the maximum data rate

- 1Mbits/s - are imposed by CAN protocol. Channel redundancy is possible

(see [35] for a proposal), but not standardized and no bus guardian is imple-

mented in the node. The key idea is to propose, as with FlexRay, a �exible

time-triggered/event-triggered protocol. As illustrated in Figure 3, TTCAN

de�nes a basic cycle (the equivalent of the FlexRay communication cycle) as

the concatenation of one or several time-triggered (or "exclusive") windows

and one event-triggered (or "arbitrating") window. Exclusive windows are

devoted to time triggered transmissions (i.e., periodic messages) while the

arbitrating window is ruled by the standard CAN protocol: transmissions

are dynamic and bus access is granted according to the priority of the frames.

Several basic cycles, that di�er by their organization in exclusive and arbi-

trating windows and by the messages sent inside exclusive windows, can be
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Figure 3: Example of a TTCAN Basic Cycle

de�ned. The list of successive basic cycles is called the system matrix, which

is executed in loops. Interestingly, the protocol enables the master node

(i.e. the node that initiates the basic cycle through the transmission of the

"reference message") to stop functioning in TTCAN mode and to resume in

standard CAN mode. Later, the master node can switch back to TTCAN

mode by sending a reference message.

TTCAN is built on a well-mastered and low-cost technology, CAN, but,

as de�ned by the standard, does not provide important dependability services

such as the bus guardian, membership service and reliable acknowledgment.

It is, of course, possible to implement some of these mechanisms at the

application or middleware level but with reduced e�ciency. Some years ago,

it was thought that carmakers could be interested in using TTCAN during a

transition period until FlexRay technology is fully mature but this was not

really the case and it seems that the future of TTCAN in production cars is

rather unsure.

2.3 Low-cost automotive networks

Several �eldbus networks have been developed to ful�ll the need for low-speed

/ low-cost communication inside mechatronic based sub-systems generally

made of an ECU and its set of sensors and actuators. Two representatives

of such networks are LIN and TTP/A. The low-cost objective is achieved

not only because of the simplicity of the communication controllers but also

because the requirements set on the micro-controllers driving the communi-

cation are reduced (i.e., low computational power, small amount of memory,

low-cost oscillator). Typical applications involving these networks include

controlling doors (e.g., door locks, opening/closing windows) or controlling
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seats (e.g., seat position motors, occupancy control). Besides cost considera-

tions, a hierarchical communication architecture, including a backbone such

as CAN and several sub-networks such as LIN, enables reducing the total

tra�c load on the backbone.

Both LIN and TTP/A are master/slave networks where a single master

node, the only node that has to possess a precise and stable time base,

coordinates the communication on the bus: a slave is only allowed to send

a message when it is polled. More precisely, the dialogue begins with the

transmission by the master of a �command frame� that contains the identi�er

of the message whose transmission is requested. The command frame is then

followed by a �data frame� that contains the requested message sent by one

of the slaves or by the master itself (i.e., the message can be produced by

the master).

2.3.1 The LIN network

LIN (Local Interconnect Network, see [33, 52]) is a low cost serial commu-

nication system used as SAE class A network, where the needs in terms

of communication do not require the implementation of higher-bandwidth

multiplexing networks such as CAN. LIN is developed by a set of major

companies from the automotive industry (e.g., DaimlerChrysler, Volkswa-

gen, BMW and Volvo) and is already widely used in production cars.

The LIN speci�cation package (LIN version 2.1 [33]) includes not only the

speci�cation of the transmission protocol (physical and data link layers) for

master-slave communications but also the speci�cation of a diagnostic proto-

col on top of the data link layer. A language for describing the capability of a

node (e.g., bit-rates that can be used, characteristics of the frames published

and subscribed by the node, etc.) and for describing the whole network is

provided (e.g., nodes on the network, table of the transmissions' schedule,

etc.). These description language facilitates the automatic generation of the

network con�guration by software tools.

A LIN cluster consists of one �master� node and several �slave� nodes

connected to a common bus. For achieving a low-cost implementation, the

physical layer is de�ned as a single wire with a data rate limited to 20Kbit/s

due to EMI limitations. The master node decides when and which frame

shall be transmitted according to the schedule table. The schedule table is

a key element in LIN; it contains the list of frames that are to be sent and
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Figure 4: Format of the LIN frame. A frame is transmitted during its �frame
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their associated frame-slots thus ensuring determinism in the transmission

order. At the moment a frame is scheduled for transmission, the master

sends a header (a kind of transmission request or command frame) inviting

a slave node to send its data in response. Any node interested can read a

data frame transmitted on the bus. As in CAN, each message has to be

identi�ed: 64 distinct message identi�ers are available. Figure 4 depicts the

LIN frame format and the time period, termed a �frame slot�, during which

a frame is transmitted.

The header of the frame that contains an identi�er is broadcast by the

master node and the slave node that possesses this identi�er inserts the data

in the response �eld. The �break� symbol is used to signal the beginning

of a frame. It contains at least 13 dominant bits (logical value 0) followed

by one recessive bit (logical value 1) as a break delimiter. The rest of the

frame is made of byte �elds delimited by one start bit (value 0) and one

stop bit (value 1), thus resulting in a 10-bit stream per byte. The �sync�

byte has a �xed value (which corresponds to a bit stream of alternatively

0 and 1), it allows slave nodes to detect the beginning of a new frame and

be synchronized at the start of the identi�er �eld. The so-called �protected

identi�er� is composed of two sub-�elds: the �rst 6 bits are used to encode

the identi�er and the last two bits, the identi�er parity. The data �eld can

contain up to 8 bytes of data. A checksum is calculated over the protected

identi�er and the data �eld. Parity bits and checksum enable the receiver of

a frame to detect bits that have been inverted during transmission.

LIN de�nes �ve di�erent frame types: unconditional, event-triggered,

sporadic, diagnostic and user-de�ned. Frames of the latter type are assigned

a speci�c identi�er value and are intended to be used in an application-
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speci�c way that is not described in the speci�cation. The �rst three types

of frames are used to convey signals. Unconditional frames are the usual type

of frames used in the master-slave dialog and are always sent in their frame-

slots. Sporadic frames are frames sent by the master, only if at least one

signal composing the frame has been updated. Usually, multiple sporadic

frames are assigned to the same frame-slot and the higher priority frame

that has an updated signal is transmitted. An event-triggered frame is used

by the master willing to obtain a list of several signals from di�erent nodes.

A slave will only answer the master if the signals it produces have been

updated, thus resulting in bandwidth savings if updates do not take place

very often. If more than one slave answers, a collision will occur. The

master resolves the collision by requesting all signals in the list one by one.

A typical example of the use of the event-triggered transfer given in [32] is

the doors' knob monitoring in a central locking system. As it is rare that

multiple passengers simultaneously press a knob, instead of polling each of

the four doors, a single event-triggered frame can be used. Of course, in the

rare event when more than one slave responds, a collision will occur. The

master will then resolve the collision by sending one by one the individual

identi�ers of the list during the successive frame slots reserved for polling

the list. Finally, diagnostic frames have a �xed size of 8 bytes, �xed value

identi�ers for both the master's request and the slave answers and always

contain diagnostic or con�guration data whose interpretation is de�ned in

the speci�cation.

It is also worth noting that LIN o�ers services to send nodes into a sleep

mode (through a special diagnostic frame termed �go-to-sleep-command�)

and to wake them up, which is convenient since optimizing energy consump-

tion, especially when the engine is not running, is a real matter of concern

in the automotive context.

2.3.2 The TTP/A network

As TTP/C, TTP/A [21] was initially invented at the Vienna University of

Technology. TTP/A pursues the same aims and shares the main design

principles as LIN and it o�ers, at the communication controller level, some

similar functionalities, in particular, in the areas of plug-and-play capabilities

and on-line diagnostics services. TTP/A implements the classic master-slave

dialogue, termed �master-slave round�, where the slave answers the master's
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request with a data frame having a �xed length data payload of 4 bytes. The

�Multi-partner� rounds enable several slaves to send up to an overall amount

of 62 bytes of data after a single command frame. A �broadcast round� is

a special master-slave round in which the slaves do not send data; it is, for

instance, used to implement sleep / wake-up services. The data rate on a

single wire transmission support is, as for LIN, equal to 20Kbit/s, but other

transmission supports enabling higher data rates are possible. To our best

knowledge, TTP/A is not currently in use in production cars.

2.4 Multimedia networks

Many protocols have been adapted or speci�cally conceived for transmitting

the large amount of data needed by emerging multimedia applications in

automotive systems. Two prominent protocols in this category are MOST

and IDB-1394.

2.4.1 The MOST network

MOST (Media Oriented System Transport, see [36]) is a multimedia network

development of which was initiated in 1998 by the MOST Cooperation (a

consortium of carmakers and component suppliers). MOST provides point-

to-point audio and video data transfer with di�erent possible data rates.

This supports end-user applications like radios, GPS navigation, video dis-

plays and entertainment systems. MOST's physical layer is a Plastic Optical

Fiber (POF) transmission support which provides a much better resilience

to EMI and higher transmission rates than classical cooper wires. Current

production cars from BMW and DaimlerChrysler employ a MOST network,

and MOST has now become the de-facto standard for transporting audio

and video within vehicles (see [37, 38]). At the time of writing, the third

revision of MOST has been announced with, as a new feature, the support

of a channel that can transport standard Ethernet frames.

2.4.2 The IDB-1394 network

IDB-1394 is an automotive version of IEEE-1394 for in-vehicle multimedia

and telematic applications jointly developed by the IDB Forum (see http:

//www.idbforum.org) and the 1394 Trade Association (see http://www.
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1394ta.org). The system architecture of IDB-1394 permits existing IEEE-

1394 consumer electronics devices to interoperate with embedded automotive

grade devices. IDB-1394 supports a data rate of 100Mbps over twisted pair

or POF, with a maximum number of embedded devices which are limited to

63 nodes. From the point of view of transmission rate and interoperability

with existing IEEE-1394 consumer electronic devices, IDB-1394 was at some

time considered a serious competitor for MOST technology but, despite a

few early implementations at Renault and Nissan, as far as we know the

protocol did not reach wide acceptance on the market.

3 Middleware layer

3.1 Rationale for a middleware

The design of automotive electronic systems has to take into account several

constraints. First, the performance, quality and safety of a vehicle depend on

functions that are mainly implemented in software and moreover depend on

a tight cooperation between these functions (see chapter Françoise Simonot-

Lion). Second, in-vehicle embedded systems are produced through a complex

cooperative multi-partner development process shared between OEMs and

suppliers. In order to increase the e�ciency of the production of compo-

nents and their integration, two important problems have to be solved: 1)

the portability of components from one Electronic Control Unit to another

one enabling some �exibility in the architecture design, and 2) the reuse

of components between platforms which is a keypoint especially for ECU

suppliers. So the cooperative development process raises the problem of in-

teroperability of components. A classic approach for easing the integration

of software components is to implement a middleware layer that provides

application programs with common services and a common interface. In

particular, the common interface allows the design of an application disre-

garding the hardware platform and the distribution, and therefore enables

the designer focusing on the development and the validation of the software

components and the software architecture that realize a function.

Among the set of common services usually provided by a middleware,

those that related to the communication between several application com-

ponents are crucial. They have to meet several objectives:
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� Hide the distribution through the availability of services and interfaces

that are the same for intra-ECU, inter-ECU, inter-domain communi-

cations whatever the underlying protocols,

� Hide the heterogeneity of the platform (i.e., micro-controllers, proto-

cols, Operating Systems, etc.) by providing an interface independent

of the underlying protocols and of the CPU architecture (e.g., 8/16/32

bits, endianness),

� Provide high-level services in order to shorten the development time

and increase quality through the re-use of validated services (e.g. work-

ing mode management, redundancy management, membership service,

etc.). A good example of such a function is the�frame-packing� (some-

times also called �signal multiplexing�) that enables application compo-

nents to exchange signals (e.g. the number of revolutions per minute,

the speed of the vehicle, the state of a light, etc.) while, at run-time,

frames are transmitted over the network; so, the �frame-packing� ser-

vice of a middleware consists in packing the signals into frames and

sending the frames at the right points in time for ensuring the dead-

line constraint on each signal it contains,

� Ensure QoS properties required by the application, in particular, it can

be necessary to improve the QoS provided by the lower-level proto-

cols as, for example, by furnishing an additional CRC, transparent

to the application, if the Hamming distance of the CRC speci�ed by

the network protocol is not su�cient in regard to the dependability

objectives. Other examples are the correction of �bugs� in lower level

protocols such as the �inconsistent message duplicate� of CAN (see [48]

for such a proposal and chapter JuanPimentel), the provision of a re-

liable acknowledgment service on CAN, the status information on the

data consumed by the application components (e.g., data was refreshed

since last reading, its freshness constraint was not respected, etc.) or

�ltering mechanisms (e.g., notify the application for each k reception

or when the data value has changed in a signi�cant way).

Note that a more advanced features would be to come up with adaptive com-

munication services, thanks to algorithms that would modify at run-time the

parameters of the communication protocols (e.g., priorities, transmission fre-
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quencies, etc.) according to the current requirements of the application (e.g.,

inner-city driving or highway driving) or changing environmental conditions

(e.g., EMI level). For the time being, to the best of our knowledge, not such

feature exists in automotive embedded systems. In fact, this point requires a

coordinated approach for the design of function (as the de�nition of control

law parameters, the identi�cation of the parameters acting on the robust-

ness of the function, etc.) and the deployment of the software architecture

that implements the function (speci�cally the communication parameters).

By increasing the e�ciency and the robustness of the application, such an

adaptive strategy would certainly ease the re-usability.

3.2 Automotive middlewares prior to AUTOSAR

Some carmakers possess a proprietary middleware (MW) that helps to in-

tegrate ECUs and software modules developed by their third-party suppli-

ers.For instance, the TITUS/DBKOM communication stack, is a proprietary

middleware (MW) of Daimler that standardizes the cooperation between

components according to a client/server model. Volcano [8, 53, 51] is a com-

mercial product of Mentor Graphics, initially developed in partnership with

Volvo. The Volcano Target Package (VTP) consists of a communication

layer and a set of o�-line con�guration tools for application distributed on

CAN and / or LIN. It is aimed to provide the mapping of signals into frames

under network bandwidth optimization and ensure a predictable and deter-

ministic real time communication system thanks to schedulability analysis

techniques (see [63, 8]). To the best of our knowledge, no publicly available

technically precise description of TITUS and Volcano exists.

The objective of the OSEK/VDX consortium (http://www.osek-vdx.

org) is to build a standard architecture for in-vehicle control units. Among

the results of this group, two speci�cations are of particular interest in the

context of this chapter: the OSEK/VDX Communication layer [43] and

the Fault-Tolerant Communication layer [42]. The OSEK/VDX consortium

(http://www.osek-vdx.org) speci�es a communication layer [43] that de-

�nes common software interfaces and common behavior for internal and ex-

ternal communications between application components. At the application

layer, these components exchange signals, termed �messages� in OSEK/VDX

terminology, while communicating OSEK/VDX entities exchange so-called

I-PDUs (Interaction Layer Protocol Data Unit) that are collections of mes-
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sages. Each consumer of a message can specify it as queued or unqueued

(i.e. a new value overwrites the old one) and associate it with a �ltering

mechanism. The emission of an I-PDU onto the network can be speci�ed as

triggered by the sending of a message that it contains or not. In the latter

case, the emission of the I-PDU is asynchronous with the sending of the

message. How signals are packed into a frame is statically de�ned o�-line

and the OSEK/VDX Communication layer automatically realizes the pack-

ing / unpacking at run-time. The characteristic of I-PDU and messages are

speci�ed through the OSEK/VDX Implementation Language (see [45]).

OSEK/VDX Communication runs on top of a transport layer (e.g., [26])

that takes care mainly of the I-PDU segmentation and it can operate on any

OS compliant with OSEK/VDX OS services for tasks, events and interrupt

management (see [44]). Some questions deserve to be raised. In particular,

communications between application processes that are internal to one ECU

or located in two distant ECUs do not obey exactly the same rules (see [13]

for more details); thus, the designer has to take into account the distribution

of the functions which is a hindrance to portability. Finally, OSEK/VDX

Communication does not obey to a Time-Triggered approach and is not

intended to be used on top of a Time-Triggered (TT) network, as for exam-

ple TTP/C or FlexRay. These networks already implement some features

that were speci�ed in OSEK/VDX Communication, as the time-triggered

sending of I-PDU, while some that are o�ered by this middleware are not

compatible with the TT paradigm, as the direct transmission of an I-PDU

as soon as a message that it contains is sent by the application. However,

higher-level services are still needed on top of FlexRay or TTP/C for facili-

tating the development of fault-tolerant applications. OSEK/VDX FTCom

(Fault-Tolerant Communication, see [42]) is a proposal whose objective is to

complete OSEK/VDX for Time-Triggered distributed architectures. One of

its main functions is to manage the redundancy of data needed for achieving

fault-tolerance (i.e., the same information can be produced by a set of repli-

cated nodes) by presenting only one copy of data to the receiver application

according to the agreement strategy speci�ed by the designer. Two other

important services of the FTCom, that are also provided by OSEK Commu-

nication, are 1) to manage the packing/unpacking of messages [57], which

is needed if the network bandwidth has to be optimized (see �4.1), and 2)

to provide message �ltering mechanisms for passing only �signi�cant� data
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to the application. OSEK/VDX FTCom was developed to run on top of a

time-triggered operating system (OS) such as OSEK Time [41]. In this OS,

the scheduling of tasks is speci�ed in a time table called the dispatcher table

that is generated o�-line. OSEK/VDX FTCom allows the OS to synchronize

the start of the task schedule de�ned in the dispatcher table to a particular

point in time in the I-PDU schedule (i.e. the TDMA round). As this point

is shared by all the ECUs connected on the same network, this service can

be used to synchronize distant applications.

Between 2001 and 2004, a European cooperative project aimed at the

speci�cation of an automotive MW within the automotive industry (ITEA

EAST-EEA project - see http://www.east-eea.net) was undertaken. To

the best of our knowledge, the ITEA EAST-EEA project was the �rst impor-

tant initiative targeting the speci�cation of both the services to be ensured

by the middleware and the architecture of the middleware itself in terms

of components and architecture of components. Similar objectives guide

the work done in the AUTOSAR consortium, see http://www.autosar.org

and [14, 17], that gathers most the key players in the automotive industry

(see Chapter StefanVoget) . The speci�cations produced by the consortium

become quickly de-facto standards for the cooperative development of in-

vehicle embedded systems (see, for instance, the migration to AUTOSAR at

PSA Peugeot-Citröen [12]).

3.3 AUTOSAR

AUTOSAR speci�es the software architecture embedded in an ECU. More

precisely, it provides a reference model which is comprised of three main

parts:

� the application layer,

� the basic software (middleware software components),

� and the Run Time Environment (RTE) that provides standardized

software interfaces to the application software.

One of AUTOSAR's main objective is to improve the quality and the

reliability of embedded systems. By using a well suited abstraction, the

reference model supports the separation between software and hardware, it
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Figure 5: AUTOSAR reference architecture

eases the mastering of the complexity, allows the portability of application

software components and therefore the �exibility for product modi�cation,

upgrade and update, as well as the scalability of solutions within and across

product lines. The AUTOSAR reference architecture is schematically illus-

trated in �gure 5. An application software component is compliant with

AUTOSAR if its code only calls entry points de�ned by the RTE. Further-

more, a basic software component used at the middleware layer has to be of

one of the type de�ned in AUTOSAR; it is AUTOSAR compliant if it pro-

vides the services and the interface formally de�ned in the speci�cation of its

type. The generation of an AUTOSAR middleware is done from the basic

software components, generally provided by suppliers, and the speci�cation

of the application itself (description of applicative-level tasks, signals sent or

received, events, alarms, etc.). Therefore its deployment can be optimized

for each ECU.

One of the main objectives of the AUTOSAR middleware is to hide the

characteristic of the hardware platform as well as the distribution of the ap-

plication software components. Thus the inter- or intra-ECU communication

services are of major importance and are thoroughly described in the docu-
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Figure 6: Communication software components and architecture

ments provided by the AUTOSAR consortium (see �gure 6 for an overview

of the di�erent modules). The role of these services is crucial for the behav-

ioral and temporal properties of an embedded and distributed application.

So, their design and con�guration have to be precisely mastered and the ver-

i�cation of timing properties becomes an important activity. The problem

is complex because the objects (e.g., signals, frames, I-PDU, etc.) that are

handled by services at one level are not the same objects that are handled

by services at another level. Nevertheless each object is strongly dependent

of one or several objects handled by services belonging to neighboring levels.

The AUTOSAR standard proposes two communication models:

� �sender-receiver� used for passing information between two application

software components (belonging to the same task, to two distinct tasks

on the same ECU or to two remote tasks),

� �client-server� that supports function invocation.

Two communication modes are supported for the �sender-receiver� commu-

nication model:
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� the �explicit� mode is speci�ed by a component that makes explicit

calls to the AUTOSAR middleware for sending or receiving data,

� the �implicit� mode means that the reading (resp. writing) of data is

automatically done by the middleware before the invocation (resp. af-

ter the end of execution ) of a component consuming (resp. producing)

the data without any explicit call to AUTOSAR services.

AUTOSAR identi�es three main objects regarding the communication: sig-

nal exchanged between software components at application level, I-PDU (In-

teraction Layer Protocol Data Unit) that consists of a group of one or several

signals, and the N-PDU (Data Link Layer Protocol Data Unit) that will ac-

tually be transmitted on the network. Precisely AUTOSAR de�nes:

� signals at application level that are speci�ed by a length and a type.

Conceptually a signal is exchanged between application software com-

ponents through ports disregarding the distribution of this component.

The application needs to precise a Transfer Property parameter that

will impact the behavior of the transmission:

� the value �triggered � for this parameter indicates that each time

the signal is provided to the middleware by the application, it has

to be transmitted on the network (as we will see later, this means

that the sending of the frame containing this signal is directly done

after the emission of the signal by the application component),

� on the contrary, the value �pending� for a signal indicates that its

actual transmission on the network depends only on the emission

rule of the frame that contains the signal.

Furthermore, when specifying a signal, the designer has to indicate if

it is a data or an event. In the former case, incoming data are not

queued on the receiver side: when a new value arrives, it erases the

previous value of the same signal. The latter case speci�es that signals

are queued on the receiver side and therefore, it ensures that for each

transmission of the signal, a new value will be made available to the

application. The handling of bu�ers or queues is done by the RTE.

� I-PDU are built by the AUTOSAR COM component. Each I-PDU

is made of one or several signals and is passed via the PDU Router

27



to the communication interfaces. The maximum length of an I-PDU

depends on the maximum length of the L-PDU (i.e., Data Link Layer

PDU) of the underlying communication interface: for CAN and LIN

the maximum L-PDU length is 8 bytes while for FlexRay the maxi-

mum L-PDU length is 254 bytes. AUTOSAR COM ensures a local

transmission when both components are located on the same ECU, or

by building suited objects and triggering the appropriate services of

the lower layers when the components are remote. This scheme en-

ables the portability of components and hide their distribution. The

transformation from signals to I-PDU and from I-PDU to signals is

done according to an o�-line generated con�guration. Each I-PDU is

characterized by a behavioral parameter, termed Transmission Mode

with di�erent possible values:

� �direct� indicates that the sending of the I-PDU is done as soon as

a �triggered� signal contained in this I-PDU is sent at application

layer,

� �periodic� means that the sending of the I-PDU is done only peri-

odically - it imposes that the I-PDU does not contain �triggered�

signals,

� �mixed� means that the rules imposed by the �triggered� signals

contained in the I-PDU are taken into account, and additionally

the I-PDU is sent periodically if it contains at least one �pending�

signal,

� �none� characterizes I-PDUs whose emission rules depend on the

underlying network protocol (e.g., FlexRay) and no transmission

is initiated by AUTOSAR COM in this mode.

� an N-PDU is built by the basic components CAN TP (Transport Pro-

tocol) or FlexRay TP. It consists of the data payload of the frame that

will be transmitted on the network and protocol control information.

Note that the use of a transport layer is not mandatory and I-PDUs

can be transmitted directly to the lower layers (see �gure 6). When a

transport layer is used, an N-PDU is obtained by:

� splitting the I-PDU so as to obtain several N-PDUs that are com-

pliant with the frame data payload length,
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� or assembling several I-PDUs into one N-PDU.

The RTE (Run Time Environment) implements the AUTOSAR middleware

interface and the corresponding services. In particular, the RTE handles the

implicit/explicit communication modes and the fact that the communication

involves events (queued) or data (unqueued). Figure 7 illustrates how the

transmission of a signal S between two remote application components (ASC-

S on the sender side and ASC-R on the receiver one) is handled by the RTE

and the COM components. Signal S is assumed to be a data, therefore it

is not queued, and it is received explicitly (explicit mode). On each ECU,

the RTE is generated according to the speci�cation of the signal exchanges

between applicative-level components. Thus, in particular, on the receiver

side, a bu�er is de�ned in the RTE for each data that is received by this

ECU. At the initialization of the system, the value of signal S at the receiver

end is set to a statically de�ned value (in the example of �gure 7, the initial

value is 0). The bu�er contains value 0 between t1 and t3, and value 20
from time t3 on. The value returned by a read call done by the application

software component ASC-R on the receiver side is 0 thus at time t2 and 20
at time t4.

In �gure 8, a similar example is given but this time signal S is an event

and so, it is queued by the RTE on the receiving ECU. At time t1, the queue
for S is initialized (queue is empty). Value 20 is queued at time t3, at t4
a read call done by the receiver application component returns 20 and the

queue becomes empty. At time t2 and t5 such a read call returns an code

indicating that the queue is empty.

The AUTOSAR COM component is responsible for several functions: on

the sender side, it ensures the transmission and noti�es the application about

its outcome (success or error). In particular, AUTOSAR COM can inform

the application if the transmission of an I-PDU did not take place before a

speci�ed deadline (i.e., deadline monitoring). On the receiver side, it also

noti�es the application (success or error of a reception) and supports the

�ltering mechanism for signals (dispatching each signal of a received I-PDU

to the application or to a gateway). Both at the sending and receiving end,

the endianness conversion is taken in charge. An important role of the COM

component is to pack/unpack signals into/from I-PDU s. Note that, as the

maximal length of an I-PDU depends on the underlying networks, the design

29



Figure 7: Sender-receiver communication model for a data signal according
to the explicit communication mode
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Figure 8: Sender-receiver communication model for an event signal according
to the explicit communication mode
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Table 1: Transmission Mode of an I-PDU vs Transfer Property of its signals

of a COM component has to take into account the networks and therefore it

is not fully independent of the hardware architecture. The COM component

has also to determine the points in time where to send the I-PDUs. This is

based on the attributes Transmission Mode of an I-PDU and on the attribute

Transfer Property of each signal that it contains. Table 1 summarizes the

combinations that are possible. Note that the �none� Transmission Mode is

not indicated in this table, in that case the transmission is driven by the

underlying network layers.

As can be seen in table 1, the actual sending of an I-PDU and therefore

of the signals that it contains is relevant to several rules. The �gure 9

illustrates how a Direct I-PDU containing two signals S1 and S2 Triggered

is transmitted. At time t1, t2, t3, t4, the sending of signal S1 or of signal

S2 to the COM component triggers the emission of the I-PDU to the lower

layer. In �gure 10, we consider an I-PDU in which are packed signal S1

(Triggered) and signal S2 (Pending). The transmission mode of the I-PDU

is set to mixed with period δt. Each time a new value of S1 is provided to the

RTE, the I-PDU is passed to the lower layer (times t1 and t6 ). In addition,

the I-PDU is also transmitted every δt (times t4 and t5). Note that, in this

con�guration, some values of S2 may not be transmitted, as for example the

value of S2 provided at time t2.
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Figure 9: Transmission of an I-PDU in Direct mode with two Triggered
signals

Figure 10: Transmission of an I-PDU in mixed mode which contains a Trig-
gered signal (S1) and a Pending signal (S2)

The COM component is generated o�-line on the basis of the knowledge

of the signals, the I-PDUs and the allocation of application software compo-

nents on the ECUs. The AUTOSAR PDU Router (see �gure 6), according

to the con�guration, dispatches each I-PDU to the right network communi-

cation stack. This basic component is statically generated o�-line as soon

as the allocation of software components and the operational architecture

is known. Other basic software components of the communication stack

are responsible for the segmenting/reassembling of I-PDU(s) when needed

(FlexRay TP, CAN TP) or for providing an interface to the communication

drivers (FlexRay Interface, CAN Interface, LIN Interface).

4 Open issues for automotive communication sys-

tems

4.1 Optimized networking architectures

The traditional partitioning of the automotive application into several dis-

tinct functional domains with their own characteristics and requirements is
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useful in mastering the complexity, but this leads to the development of sev-

eral independent sub-systems with their speci�c architectures, networks and

software technologies.

Some di�culties arise from this partitioning since more and more cross-

domain data exchanges are needed. This requires implementing gateways

whose performances in terms of CPU load and impact on data freshness

have to be carefully assessed (see, for instance, [62]). For instance, an ECU

belonging, from a functional point of view, to a particular domain can be

connected, for wiring reasons, onto a network of another domain. For exam-

ple, the Diesel Particulate Filter (DPF) is connected onto the body network

in some vehicles even though it belongs, from a functional standpoint, to

the powertrain. This can raise performance problems since the DPF needs

a stream of data with strong temporal constraints coming from the engine

controller located on the powertrain network. Numerous other examples

of cross-domain data exchanges can be cited such as the engine controller

(powertrain) that takes input from the climate control (body) or information

from the powertrain displayed on the dashboard (body). There are also some

functions that one can consider as being cross-domains such as the immobi-

lizer, which belongs both to the body and powertrain domains. Upcoming

X-by-Wire functions will also need very tight cooperation between the ECUs

of the chassis, the powertrain and the body.

A current practice is to transfer data between di�erent domains through

a gateway usually called the �central body electronic�, belonging to the body

domain. This subsystem is recognized as being critical in the vehicle: it con-

stitutes a single point of failure, its design is overly complex and performance

problems arise due to an increasing workload.

An initial foreseeable domain of improvement is to further develop the

technologies needed for the interoperability between applications located on

di�erent sub-networks. With the AUTOSAR project, signi�cant progresses

in the area of MW have been achieved over the last years and we are coming

closer to the desirable characteristics listed in �3.1.

Future work should also be devoted to optimizing networking architec-

tures. This implies rethinking the current practice that consists of imple-

menting networks on a per-domain basis. The use of technologies that could

ful�ll several communication requirements (e.g., high-speed, event-triggered

and time-triggered communication, all possible with FlexRay) with scalable
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performances is certainly one possible direction for facilitating the design.

Certainly, software tools, such as our tool NETCAR-Analyzer (see http:

//www.realtimeatwork.com), will be helpful to master the complexity and

come up with cost and dependability-optimized solutions. The use of soft-

ware along the development cycle will be facilitated by the advent of the

ASAM FIBEX standard [2], in the process of being adopted by AUTOSAR,

which enables to fully describe the networks embedded in a vehicle (CAN,

LIN, FlexRay, MOST and TTCAN protocols), the frames that are exchanged

between ECUs and the gatewaying strategies.

4.2 System engineering

The veri�cation of the performances of a communication system is twofold.

On the one hand, some properties of the communication system services can

be proved independently of the application. For instance, the correctness

of the synchronization and the membership and clique avoidance services of

TTP/C have been studied using formal methods in [6, 47, 5].

There are other constraints whose ful�llment cannot be determined with-

out a precise model of the system. This is typically the case for real-time

constraints on tasks and signals where the patterns of activations and trans-

missions have to be identi�ed. Much work has already been done in this �eld

during the last 10 years: schedulability analysis on priority buses [63], joint

schedulability analysis of tasks and messages [64, 22], probabilistic assess-

ment of the reliability of communications under EMI [39, 19, 18], etc. What

is now needed is to extend these analyses to take into account the peculiar-

ities of the platforms in use (e.g. overheads due to the OS and the stack of

communication layers) and to integrate them in the development process of

the system. The problem is complicated by the development process being

shared between several partners (the carmaker and various third-part sup-

pliers). Ways have to be found to facilitate the integration of components

developed independently and to ensure their interoperability.

In terms of the criticality of the involved functions, future automotive X-

by-Wire systems can reasonably be compared with Flight-by-Wire systems

in the avionic �eld. According to [68], the probability of encountering a

critical safety failure in vehicles must not exceed 5 · 10−10 per hour and per

system, but other studies consider 10−9. It will be a real challenge to reach

such dependability, in particular, because of the cost constraints. It is certain
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that the know-how gathered over the years in the avionic industry can be of

great help but design methodologies adapted to the automotive constraints

have to be developed.

The �rst step is to develop technologies able to integrate di�erent sub-

systems inside a domain (see section 4.1) but a real challenge is to shift the

development process from subsystem integration to a complete integrated

design process. The increasing amount of networked control functions in-

side in-car embedded systems leads to developing speci�c design processes

based, among others, on formal analysis and veri�cation techniques of both

dependability properties of the networks and dependability requirements of

the embedded application.
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