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Abstract: As the demand for computing power is quickly
increasing in the automotive domain, car manufactur-
ers and tier-one suppliers are gradually introducing mul-
ticore ECUs in their electronic architectures. Addition-
ally, these multicore ECUs offer new features such as
higher levels of parallelism which eases the respect of
the safety requirements introduced by the ISO 26262 and
can be taken advantage of in various other automotive
use-cases. These new features involve also more com-
plexity in the design, development and verification of the
software applications. Hence, OEMs and suppliers will
require new tools and methodologies for deployment and
validation. In this paper, we present the main use cases
for multicore ECUs and then focus on one of them. Pre-
cisely, we address the problem of scheduling numerous
elementary software components (called runnables) on
a limited set of identical cores. In the context of an au-
tomotive design, we assume the use of the static task
partitioning scheme which provides simplicity and bet-
ter predictability for the ECU designers by comparison
with a global scheduling approach. We show how the
global scheduling problem can be addressed as two sub-
problems: partitioning the set of runnables and building
the schedule on each core. At that point, we prove that
each of the sub-problems cannot be solved optimally due
to their algorithmic complexity. We then present low com-
plexity heuristics to partition and build a schedule of the
runnable set on each core before discussing schedula-
bility verification methods. Finally, we assess the perfor-
mance of our approach on realistic case-studies.
keywords: multicore ECU, AUTOSAR, static cyclic
scheduling, load balancing, offsets.

1 Introduction

Context of the paper. Multi-source software running on
the same ECU (Electronic Control Unit) is becoming in-
creasingly widespread in the automotive industry. One of
the main reasons being that OEMs want to reduce the
number of ECUs which grew up above 70 for high-end
cars. One of the outcomes of the AUTOSAR initiative
is indeed to help OEMs shift from the “one function per
ECU” paradigm to more centralized architecture designs.
As chip manufacturers are reaching the point where they
can no longer meet the increasing performance require-

ments through frequency scaling, multicore ECUs are be-
ing gradually introduced in the automotive domain. Those
multicore platforms offer also additional benefits such as
higher level of parallelism which are needed to meet the
upcoming safety requirements, as the ISO 26262 is being
introduced. Now, the challenge is to adapt existing design
methods to the new multicore constraints. The schedul-
ing of the software components is in one of the key issues
in that regard and it has to be revamped.

Existing work. In a multicore system, the tasks are
either statically allocated to the cores or they can be dis-
tributed dynamically at run-time to balance the workload
or migrate functions to increase availability. The later ap-
proach involves complex task and resource interactions
which are difficult to predict and validate. For this rea-
son, approaches relying on static allocation (i.e., parti-
tioning) and deterministic mechanisms such as periodic
cyclic scheduling are more likely to be used in the au-
tomotive context and this is the option taken within the
AUTOSAR consortium[5]. Scheduling tasks on a multi-
processor systems under the static partitioning approach
has been well studied for a long time, see for instance [4]
and [14, 13, 9, 8]. However, the works we are aware
of deal with online algorithms such as FPP or EDF, and
do not consider the static cyclic scheduling of tasks.
The configuration algorithms developed in this paper are
closely related to [6] (mono-processor scheduling of tasks
with offsets) and [7] (scheduling of frames with offsets)
but it is applied to multicore and goes beyond as we pro-
vide lower-bounds on the performances. As the problem
is of practical interest in the industry, there are in-house
tools at the OEMs as well as commercial tools, such as
RTaW NETCAR-ECU [15], that have been developed for
configuring the scheduling. However, the proprietary al-
gorithms used in these tools can usually not be disclosed
and they are sometimes specialized for some specific us-
age.

Objectives of the paper. Multicore platforms offers two
major benefits for the automotive domain: power and par-
allelism. In this paper, we discuss the main use-cases
benefiting from the usage of multicore architectures in the
automotive domain. Then, this paper focuses on a par-
ticular problem which is the scheduling of numerous el-
ementary pieces of code (called “runnables” in the AU-



TOSAR terminology) with the objective of using the per-
formance of multiple cores to reduce the number of ECUs.
In our view, a static cycling scheduling approach is es-
pecially suited when, as it is most often the case, there
are much more runnables that the maximum number of
tasks allowed by the automotive operating system1. Thus
runnables must be grouped together and scheduled by
one or several sequencer tasks (also called dispatcher
tasks). Regarding multicore scheduling, we assume a
static partitioning scheme which is likely to be adopted
in a first step in the automotive domain: it is conceptually
simple and provides a better predictability for the ECU
designer compared to the global scheduling approach.
The aim of this study is to develop practical algorithms
to build the partitioning of runnables and to schedule the
runnables on each cores so as to respect timing con-
straints and, as far as possible, uniformize the CPU load
over time. This latter objective is of course important to
minimize the hardware cost and to facilitate the addition of
new functions, as typically done in the incremental design
process of OEMs.

2 Main use cases for multicore
ECU in the automotive domain

There exist very distinct hardware and software architec-
tures for multicore ECU platforms. As far as hardware is
concerned, suppliers envision various multicore architec-
tures: identical cores, heterogeneous cores with different
operating speeds and instruction sets and, possibly, var-
ious I/O and memory structures. However, chip manu-
facturers have been producing multiprocessor cores with
identical cores for the PC industry for a while which may
influence the automotive industry as those architectures
are proven in use and are likely to be cheaper thanks to
mass production. In this section, we discuss the main use
cases for a multicore ECU and implementation solutions
that would properly fit them.

2.1 Decreasing the complexity of in-vehicle
architecture

The higher level of performance provided by multicore ar-
chitectures allows to simplify in-vehicle architectures by
executing on multiple cores the software previously run on
multiple ECUs. This possible evolution towards more cen-
tralized architectures is also an opportunity for OEMs to
decrease the number of network connections and buses.
This means that parts of the complexity will be trans-
ferred from the E/E architecture to the hardware and soft-
ware architecture of the ECUs. Furthermore, static cyclic
scheduling allows to easily add functions/runnables on an
existing ECU. However, in practice, important architec-
tural shifts are hindered by the carry-over of ECUs and
existing sub-networks which is widely used by generalist
car manufacturers. The extent to which more centralized
architectures will be adopted remains thus unsure.

2.2 Dealing with resource demanding ap-
plications

Multicore ECUs bring major improvements for some ap-
plications requiring high performance such as high-end
engine controllers and real-time image processing appli-
cations. This use case does not require any particular
hardware feature and identical cores are more likely to be
used to meet high performance requirements. In these
applications, one takes advantage of the possibility to par-
allelize jobs on multicore architecture. Typically, the same
application can be executed on different cores to process
different parts of a same data set in a parallel manner.

2.3 Improving the safety

Multicore architectures provide efficient ways to imple-
ment safety mechanisms. We identify three main meth-
ods to improve safety taking advantage of the multicore
architecture. The first method consists in segregating
trusted code and non trusted code on different cores.
For instance, a car manufacturer may consider the soft-
ware provided by suppliers as non-trusted code, or an
ECU integrator may consider the car manufacturer’s code
as non-trusted for responsibility reasons. This isolation
between software components requires strong protection
mechanisms for memory, CPU time and the other shared
resources, as they are now provided by Autosar OS, or,
as they could be provided by virtual machines [11].
The second method consists in executing safety critical
software components in a redundant manner, possibly
with a system of vote choosing the output given by a ma-
jority of the duplicated runnables. It is possible to dupli-
cate the whole set of software components allocated to a
core on another core, or only the most critical runnables in
order to find a trade-off between safety and computational
requirements. To further increase the safety, N-Version
Programming (NVP) can be employed: multiple versions
of the same runnables, developed by different suppliers,
are executed in parallel, instead of executing copies of the
same implementation.
Finally, multicore architectures enable easier implemen-
tation of function monitoring. In this case, the proper ex-
ecution of some functions on one core can be monitored
from another core. It should be noted that higher levels
of safety can be achieved by the usage of several distinct
microprocessors instead of several distinct cores on the
same microprocessor such as done in the E-Gas frame-
work for engine controllers, though those kind of solutions
are more expensive to implement.

2.4 Dedicated use of cores

Finally, another important use case taking advantage of
a multicore ECU consists in using a core to handle spe-
cific low-level services. In the context of Autosar OS, a
core could serve as a dedicated I/O controller, execute

1Depending on the conformance class, OSEK/VDX and AUTOSAR OS impose a maximum of only 8 or 16 tasks.



the communication stack or the whole set of basic soft-
ware modules, while some other core would only take
care of applicative level software components. For in-
stance, a core can be used to run the time-triggered ap-
plication while a second core handles the interruptions as
well as the event-triggered runnables such as done in the
PharOS project[2] on a SX12E micro-controller.

3 Partitioned scheduling of tasks
on AUTOSAR OS

In this section, we study the first of the use cases we iden-
tified for multicore architectures, which is to permit a re-
duction of the number of ECUs in the E/E architecture by
using more powerful ECUs. In this context, we present al-
gorithms to schedule large numbers of runnables on mul-
ticore ECUs. Since automotive OSs can only handle a
limited amount of OS-tasks, the scheduling of runnables
has to be done within dispatcher tasks. A first step of the
approach is to partition the runnable sets onto the differ-
ent cores. The next and last step consists in determining
the offsets between the runnables allocated on each core
so as to balance the load over time.

3.1 Static cyclic and fixed priority schedul-
ing

Static cyclic scheduling of elementary software compo-
nents, or runnables, is common because they are usu-
ally many more runnables that the maximum number of
tasks allowed by automotive operating systems such as
OSEK/VDX or AUTOSAR OS. For this reason, runnables
must be grouped together and scheduled within a se-
quencer task (also called dispatcher task). In this pa-
per, we focus on how to schedule large runnable sets on
multicore platforms using a static partitioning approach.
Indeed, the static task partitioning scheme is very likely
to be adopted at least in a first step because it is con-
ceptually simple and provides a better predictability for
the ECU designers by comparison with a global schedul-
ing approach. One aims to develop practical algorithms,
whose performances can be guaranteed, to build the dis-
patcher tasks on each core and to schedule the runnables
within these dispatcher tasks so as to respect sampling
constraints and, as far as possible, uniformize the CPU
load over time. This latter objective is of course important
to minimize the hardware cost and to facilitate the addi-
tion of new functions, as typically done in the incremental
design process of OEMs.

3.2 Model description

In this case study, we consider a large set of n periodic
elementary software components, also called runnables,
that are to be allocated on an ECU consisting in m identi-
cal cores. In practice, a runnable can be implemented as

a function called, whenever appropriate, within the body
of an OS task.

3.2.1 Runnable characteristics

The ith runnable is denoted by Ri =
(Ci, Ti, Oi, {R}, Pi). Quantities Ci, Ti and Oi corre-
spond respectively to the Worst-Case Execution Time
(WCET), the period and the offset of the Ri. The offset
of a runnable is the release date of the first instance of
that runnable, subsequent instances are then released
periodically. The choice made for the offset values has
a direct influence on the repartition of the workload over
time.
A set of inter-runnable dependencies is denoted by {R}.
Indeed, due to specific design requirements, such as
shared variables, some runnables may have to be allo-
cated on the same core and the set {R} is used to cap-
ture those constraints. In addition, some specific features,
as I/O ports being located on a given core, may require a
runnable to be allocated onto a specific core. This locality
constraint is expressed by Pi.

3.2.2 Dispatcher task

Runnables are scheduled on their designated core us-
ing a dispatcher task, or “sequencer task”, that stores the
runnable activation times in a table and releases them at
the right points in time. A dispatcher task is characterized
by the duration of the dispatch table Tcycle that is exe-
cuted in a cyclic manner2, and by a quantum Ttic which
is the duration of a slot in the table. For instance, typi-
cally, one may have Tcycle = 1000ms and Ttic = 5ms. It
should be noted that Tcycle must be a multiple of the gcd
of the runnable periods and the lcm of these periods must
be a multiple of Ttic. As a result, a dispatch table holds
Tcycle/Ttic slots.

3.2.3 Assumptions

In this paper, we place a set of working assumptions,
which, in our experience, can most often be met in to-
day’s automotive applications:

• Each runnable are executed strictly periodically. As
a result, the whole trajectory of the system is de-
fined by the first activation times of the runnables
(i.e., their offsets).

• The runnables are assumed to be offset-free, in the
sense that the offset of a runnable can be freely
chosen in the limit of its period (see [6]). Those off-
sets will be assigned during the construction of the
dispatch table with the objective to uniformize the
CPU load over a scheduling cycle.

• The worst case execution times of the runnables
are assumed to be small compared to Ttic. Typical
values for the case we consider would be 5ms for
Ttic and Ci ≤ 300µs.

2The total dispatch table is sometimes referred to as the dispatcher round.



• All cores are identical regarding their processing
speed.

• There are no dependencies between runnables al-
located on different cores. Therefore, all cores can
be scheduled independently. This assumption is in
line with the choices made by AUTOSAR regarding
multicore architecture [5].

This last assumption allows to divide the overall problem
into two independent sub-problems. A first part of the
problem consists in allocating all of the n runnables onto
the m cores with respect to their constraints with the aim
of balancing the CPU load of the m resulting partitions
(see §3.3). The second part of the problem consists in
building the dispatch table for each core (see §3.4).

3.2.4 Scheduling condition

In our context, the system is schedulable, and thus can
be safely deployed, if and only if on each core:

1. The runnables are executed strictly periodically.

2. The initial offset of each runnable is smaller than its
period.

3. The sum of the WCET of the runnables allocated in
each slot does not exceed a given threshold, which
is typically chosen as the duration of the slot, i.e.
Ttic.

3.3 Building tasks as a bin-packing prob-
lem

It is assumed that the number of cores is fixed. We first
distribute all the runnables on the cores without check-
ing the schedulability condition at that stage. Assigning n
tasks to m cores is like subdividing a set of n elements into
m non-empty subsets. By definition, the number of possi-
bilities for this problem is given by the Stirling number of
the second kind (see [1]): 1

m!

∑m
i=0(−1)(m−i) (m

i ) in. Con-
sidering that the runnables may have core allocation con-
straints, and thus cores should be distinguished, the m!
combinations of cores must be considered. As a result,
one has at most

∑m
i=0(−1)(m−i) (m

i ) in different possibil-
ities for the partitioning problem alone. Such a complexity
prevents us from an exhaustive search because even for
small-sized runnable sets. For instance, with n = 30 and
m = 2, the search space holds more than one billion pos-
sibilities.
Considering this complexity, to balance as evenly as pos-
sible the utilization of processor cores, we propose a
heuristic based on the bin-packing decreasing worst-fit
scheme for a fixed number of bins (where “bins” here are
processor cores). The heuristic is given in Algorithm 1.

Algorithm 1 Partitioning of the runnable set.

input: runnable set {Ri}, number of cores m
(1) Group inter-dependent runnables into runnable clus-
ters. Independent runnables become clusters of size 1.
(2) Allocate the runnable clusters which have a locality
constraint to the corresponding cores.
(3) Sort runnables clusters by decreasing order of CPU
utilization rate ρ =

∑
i

Ci

Ti
.

(4) Iterate over the sorted clusters
(a) Find the least loaded core,
(b) Assign the current cluster to this core.

Step (1) runs in O(n). Step (2) runs in O(n) but all
the runnables allocated in (2) will not have to go through
the steps (3) and (4) that are algorithmically more com-
plex. Step (3) runs in O(n · log n). Finally step (4)
runs in O(n · m). As a conclusion, algorithm 1 runs in
O(n(m + log n)) which does not raise any issue in prac-
tical cases.

It is worth pointing out that m ≥
⌈∑m

i=1
Ci

Ti

⌉
is a neces-

sary schedulability condition which can be used to rule
out configurations with too few processor cores.

3.4 Strategies for scheduling tasks

The next stage consists in building the dispatch table
for the set of runnables. In a first step, it is assumed
that there are no precedence constraints between the
runnables and that a single dispatch table is built per core.
Those assumptions will be relaxed later in the paper.

3.4.1 Least-loaded algorithm

Considering a runnable Ri of period Ti, there are Ti

Ttic

possibilities for allocating this runnable (see schedulabil-
ity condition #2 in §3.2.4). As a result there are

∏n
i=1

Ti

Ttic

alternative schedules for the n runnables and, given the
cost function, we are not aware of any ways to find the
optimal solution with an algorithm which does not have
an exponential complexity. Considering a realistic case of
50 runnables having their period as least twice as large
as Ttic, it would be needed to evaluate a minimum of 250

possible solutions. Once again, given the complexity, we
have to resort to a heuristic. Here, we adapt to the prob-
lem of scheduling runnables the “least-loaded” algorithm
proposed by Grenier et al. in [7] for the frame offset allo-
cation on a CAN network.

The intuition behind the heuristic is simple: at each step,
we assign the next runnable to the least loaded slot, as
described in Algorithm 2. The load of a slot is the sum of
the Ci of the runnables {Ri} already assigned to this slot.



Algorithm 2 Assigning runnables to slots: the “least-
loaded” heuristic.
input: runnable set {Ri}, Ttic, Tcycle

(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) For i = 1 . . . n

(a) Look for the least loaded slot in the Ti

Ttic
first slots,

(b) Allocate Ri in every Ti

Ttic
slot starting from this slot.

Step (1) runs in O(n · log n). Step (2) iterates n times
over steps (2a) and (2b) which run respectively in Ti

Ttic
≤

Tcycle

Ttic
and Tcycle

Ti
≤ Tcycle

Ttic
. As a result, this algorithm

runs in O(n(log n+maxi{Ti}/Ttic +Tcycle/mini{Ti}) ≤
O(n(log n + 2 · Tcycle/Ttic).
For practical applications, ties at step (1) are broken us-
ing highest WCET first and ties at step (2a) by choosing
the central slot of the longest sequence of consecutive
slots having the minimum load. While the latter rule for
breaking ties does not have any impact on the theoreti-
cal results that will be derived next, it helps to separate
load peaks, which is important from the ECU designer
point of view. As an illustration, the result of applying the
least-loaded heuristic to the set of runnables Ri(Ti, Ci):
R1(10, 2), R2(10, 1), R3(20, 4), R4(20, 2) leads to the
dispatch table shown in Figure 1.

Figure 1: Example of dispatch table.

The resulting distribution of the load is:

Slot 1 2 3 4 5 6 7 8

Load 2 4 2 3 2 4 2 3

Table 1: Load repartition corresponding to the dispatch
table in Figure 1.

There are two metrics to evaluate the quality of a dispatch
table. The first important criterion is to have the lowest
maximum load in the cycle since this will determine the
feasibility of the schedule and the possibility to add further
functions later in the lifetime of the system. The maximum
load over all slots is also referred to as the peak load. In a
second step, a more fine-grained assessment of the uni-
formity of the load balancing can be given by the standard
deviation of the load distribution over all the slots.

3.4.2 Some theoretical results

Here are present a few useful theoretical results. Ex-
tended demonstrations can be found in [12].

Theorem 1: Defining Cmin = mini∈{R}k
{Ci},Cmax =

maxi∈{R}k
{Ci} and Tmax = maxi∈{R}k

{Ti}

ρk ≤ 1 +
Cmin

Tmax
− Cmax

Ttic
(1)

is a sufficient schedulability condition for a harmonic task
set.

Theorem 2: Another way to look at it is to notice that
this algorithm guarantees to be able to use (1 − Cmax

Ttic
) of

the capacity of each core.
The worst-case peak load is obtained when allocating a
runnable R = (Cmax, Tmax = Ttic) in a slot allocation
with a perfectly balanced load. In the worst case, the
system is still schedulable when this average slot load is
equal to Ttic−Cmax. In other words, when the system be-
comes no longer schedulable, every slot has an allocated
load greater or equal to Ttic − Cmax. As a consequence,
at least (1− Cmax

Ttic
) of the capacity of the considered core

has been used by our algorithm.
For example, with Ttic = 5ms and Cmax = 300µs, at
least 94% of the CPU is guaranteed to be usable. In prac-
tice, when Cmax is small, this bound is very useful. In the
following, (1 − Cmax

Ttic
) will be referred to as the harmonic

schedulability bound.

Theorem 3: Considering the problem of scheduling a
given harmonic runnable set with as few cores as pos-
sible, the previous result gives a bound of the maximum
number required by this algorithm. Defining P =

∑
i

Ci

Ti

the total load of a runnable set with harmonic periods and
mmin the minimum number of cores required to schedule

it, it follows from theorem 2 that mmin ≤
⌈

P
1−Cmax/Ttic

⌉
.

3.4.3 Dealing with non harmonic runnable set

In practice, often, runnable sets do not have strictly har-
monic periods. As a consequence, the previous results
do not hold anymore. In particular, placing a runnable in
the least loaded slot of the dispatch table could induce
peaks because of the runnable periodicity. Take the fol-
lowing runnable set for instance: R1(10, 2), R2(20, 3),
R3(20, 1), R4(50, 2) with Ttic = 5 and Tcycle = 100. Fig-
ure 3 shows the dispatch table before the allocation of
R4.

Figure 3: Dispatch table before the insertion of R4.

The resulting distribution of the load is:

Slot 1 2 3 4 5 6 7 8 9 10 11 12 ...

Load 1 2 4 2 1 2 4 2 1 2 4 2 ...

Table 2: Load repartition corresponding to the dispatch
table in Figure 3.

At that point, choosing one of the least loaded slots in the
dispatch table with make the schedule fail because R4

will also have to be allocated in a slot with the highest
load because of its periodicity. For example, if the first
instance of R4 is allocated in slot 1, the next instance will



Figure 2: A set of runnables corresponding to slightly less than 94% of CPU load scheduled on a 4-core ECU with LL
(left-hand graphic) and G-LL1σ (right-hand graphic). Graphics obtained from RTaW NETCAR-ECU.

be placed in slot 11 and make the system unschedulable.
However, allocating R4 in any even slot is safe.
In order to deal with non-harmonic runnable sets, we
need to go through a larger window of slots for the choice
of the offsets. In the following, variable Twindow is equal to
the lcm of the periods of the runnables already scheduled
at the current state of the algorithm. Instead of looking
for the least loaded slot in the first Ti/Ttic slots, we try to
create the smallest peak over Twindow, knowing that the
schedule repeats in cycle afterward.

Algorithm 3 Generalized “least-loaded” heuristic.

input: runnable set {Ri}, Ttic, Tcycle

(1) Sort runnables Ri such that Ttic ≤ T1 ≤ . . . ≤ Tn ≤
Tcycle.
(2) Twindow = Ttic.
(3) For i = 1 . . . n

(a) Twindow = lcm(Twindow, Ti),
(b) In the first Ti/Ttic slots, look for the slot such that

the highest load in the slots where Ri is periodically allo-
cated in the Twindow/Ttic first slots is the lowest,

(c) Allocate Ri in every Ti

Ttic
slot starting from this slot.

Step (1) of algorithm 3 runs in O(n · log n). Step (3a)
runs in O(log Tcycle). Step (3b) and (3c) respectively run
in O(n · Twindow/Ttic) ≤ O(n · Tcycle/Ttic) and O(n ·
Tcycle/Ti) ≤ O(n · Tcycle/Ttic). As a result, the whole
algorithm runs in O(n · (log n+2 ·Tcycle/Ti +log Tcycle)).

3.4.4 Improvement: placing outliers first

The algorithms described in sections 3.3 and 3.4 con-
struct the scheduling of runnables with arbitrary periods
and possibly with locality and inter-runnable constraints.
As shown in the experiments in section 4, these algo-
rithms sometimes do not handle well runnable sets where
a few runnables with a low frequency have a very large

WCET compared to the other runnables.

In practice, runnables with a large WCET tend to have a
large period. As a result, runnables with large WCET are
usually processed late in the runnable allocation process
which explains the load peaks. In order to reduce those
peaks, the scheduling algorithm is improved by process-
ing some runnables with a large WCET first3.

We define the WCET threshold Ccritic = µ + k · σ with
µ and σ denoting respectively the average and the stan-
dard deviation of the distribution of {Ci} and k an integer
value. The runnables with Ci larger than Ccritic are allo-
cated first. Then, the rest of the runnables are processed
as done in algorithm 3. This new version of the load-
balancing algorithm is referred to as Generalized least-
loaded sigma, or G-LLkσ for short. In the experiments
that follows, k is chosen equal to 1.

4 Performances and robustness on
automotive ECUs

In this section, we evaluate the performances of the
scheduling algorithms on automotive case-studies. The
algorithms LL, G-LL, and G-LLkσ, described respectively
in §3.4.1, §3.4.3 and §3.4.4, have been implemented as
plug-ins of NETCAR-ECU [15]. The characteristics of the
task sets under study (i.e., period, WCET) are drawn
at random from distributions derived from an existing
body gateway ECU. This ECU has about 200 runnables
whose periods are almost harmonic (only about 5% of
the runnables have non-harmonic periods). The duration
of the slot, Ttic, is set to 5ms in all experiments. We dis-
tinguish configurations with a single sequencer task per
core and configurations with multiple sequencer tasks per
core. The latter implementation is required when memory
protection is needed among runnables.

3Allocating the runnables by decreasing order of WCET proves not to be an efficient approach in our experiments.



4.1 Single sequencer task on each core

Here we assess the ability of the algorithms to uniformize
the CPU load over time and to keep on providing feasible
solutions at very high load level.

4.1.1 Harmonic task sets

The task sets considered here are harmonic with peri-
ods in the set {10, 50, 100, 500, 1000ms}, which is a large
subset of the periods used in the real ECU. The WCETs
vary from 10µs to 300µs with a probability derived from
the real distribution on the body gateway ECU. We choose
the average CPU load slightly below 94% so that the fea-
sibility is ensured (see theorem 2). The left-hand graphic
of Figure 2 shows the distribution of the load over a LCM
of the periods with LL while the right-hand graphic shows
the distribution with G-LL1σ. As it can been seen, the load
peaks are much smaller with G-LL1σ (peak load is 94.6%)
than with LL (peak load is 98.4%). This can be explained
because the few largest runnables are placed first and
the numerous smaller ones placed afterward fill the gaps
in the schedulable table.

4.1.2 Non-Harmonic task sets

The goal is to assess the extent to which the schedu-
lability bound, even if it has been derived in the har-
monic case, can provide guidelines for the non-harmonic
case. Precisely, we measure the success rate of the al-
gorithms in the non-harmonic case at load levels such
that feasibility would be ensured in the harmonic case.
In the existing body gateway ECU, the set of task peri-
ods is close to be harmonic since withdrawing only a few
runnables ensures the harmonic property. To test the al-
gorithms in a more difficult context, we build a “hard” non-
harmonic case with more departure from the harmonic
property. Precisely the periods are now chosen in the set
{10, 20, 25, 40, 50, 100, 125, 200, 125, 500, 1000ms}. As
can be seen in Table 3, when the load is close to the
harmonic schedulability bound the algorithms remain ef-
ficient, in particular the G-LL which was able to suc-
cessfully schedule the 1000 random configurations of the
test. This suggests to us that the harmonic schedulability
bound is a good dimensioning criterion also in the non-
harmonic case.

max WCET (µs) 150 300 900

Schedulability bound

in the harmonic case
97% 94% 82%

Success % of LL in the

“hard” non-harmonic case
96% 96% 92%

Success % of G-LL in the

“hard” non-harmonic case
100% 100% 100%

Table 3: Performances of the scheduling algorithms in
the non-harmonic case when the load is close to the har-
monic schedulability bound. Statistics collected on 1000
random configurations for each max. WCET value. The
schedulability bound is derived from theorem 2.

Table 4 presents the results obtained at higher loads, i.e.
above the harmonic schedulability bound. Precisely sets
of runnables with max. WCET equal to 300µs and 900µs
and CPU loads equal to 95% and 97% are scheduled with
LL, G-LL and G-LL1σ.

Generated CPU load 95% 97% 95% 97%

Schedulability bound

in the harmonic case

94%

max WCET=300µs

82%

max WCET=900µs

Success % of LL 64% 18% 12% 1%

Success % of G-LL 94% 94% 30% 5%

Success % of G-LL1σ 100% 100% 97% 76%

Table 4: Performances of the scheduling algorithms in the
non-harmonic case when the load is greater than the har-
monic schedulability bound. Statistics collected on 1000
random configurations for each max. WCET value.

As it was expected, the lower the schedulability bound,
the harder it is to schedule the runnables (compare for
instance the 97% columns). The second lesson is that
G-LL1σ clearly outperforms all the other contenders es-
pecially when the WCETs are large.

4.2 Multiple sequencer tasks on each core

In this section, we suppose that several sequencer tasks
need to be scheduled on each core. The case arises
when memory protection across runnables is needed. In-
deed, memory protection, such as provided by AUTOSAR
OS, cannot be ensured at the runnable level but at the
task (or ISR and OS-application) level. We assume that
the different sequencer tasks are scheduled by a fixed pri-
ority scheduler as it is foreseeable in AUTOSAR ECUs. In
the next subsections, we distinguish two cases: synchro-
nized sequencer tasks and non synchronized sequencer
tasks. In the first case, we assume that the initial offsets
between sequencer tasks are known and they have the
same Ttic. In the second case, the different sequencer
tasks may be driven by different clocks. This later case
arises, for instance, in engine controllers in which some
runnables are driven by the micro-controller clock while
others are driven on the basis of the engine RPM which
varies over time.

4.2.1 Synchronized sequencer tasks

Synchronized means here that the initial offsets of the dif-
ferent sequencer tasks are known and that they have the
same Ttic. In this context, the runnable activation times
are known and the algorithms presented in the paper can
be applied to build the sequencer tasks, which are each
assigned a distinct priority level (i.e., FPP scheduling be-
tween sequencer tasks).
The first step is to allocate the runnables to the different
sequencer tasks, mainly depending on the memory pro-
tection needs. Then, the sequencer tasks are built itera-
tively (by decreasing order of their priority), which consists
in allocating the runnables into the slots using LL, G-LL



Figure 4: Incremental scheduling of three synchronized sequencer tasks with respective load of 45%, 35% and 15% for a
total of 95% of the core capacity. Tcycle is equal to 1000ms and Ttic is equal to 5ms for each sequencer task.

or G-LLkσ. The least-loaded slot (LL algorithm) or the
slot allocation resulting in the smallest peak (G-LL and G-
LLkσ) are determined considering the runnables of higher
priority sequencer tasks. This can done for instance by
building a global virtual sequencer task with a cycle period
equals to the lcm of the sequencer tasks cycle periods.
In Figure 4, three sequencer tasks whose loads respec-
tively correspond to 45%, 35% and 15% of the core ca-
pacity are incrementally scheduled. The runnables were
randomly generated from distributions derived from an
existing body gateway ECU with cycle periods equal to
1000ms and slot duration equal to 5ms. The graphs in
Figure 4 show the resulting load of one core after apply-
ing G-LL on each sequencer task. Schedulability is then
ensured by checking the resulting load of every slot in the
virtual global sequencer task. As seen in Figure 4, the
load balancing performances of G-LL are very satisfac-
tory in this context too as peaks do not exceed 3% of the
core capacity. It should be pointed out that this incremen-
tal scheduling approach may prove also very useful when
adding new runnables on existing ECU configurations.

4.2.2 Non synchronized sequencer tasks

The previous approach cannot be applied to non synchro-
nized sequencer tasks since their offset and time basis
are not known. If the sequencer tasks are scheduled on
different time basis (e.g, clock or engine RPM), whatever
the way a sequencer task is constructed, each of its slot
can interfere with any other slots of the other sequencer
tasks as all offset configuration between them are pos-
sible at run-time. This means that, on the contrary to
the synchronized case of §4.2.1, we cannot rely on how
higher priority sequencer tasks are defined when building
the slot allocation of a sequencer task. The maximum ro-
bustness against all possible asynchronisms between dif-
ferent sequencer tasks is achieved by balancing the load
of each one of them individually as done in the basic use-
case of the algorithms of §4.1.
Because of the possibly varying time basis, the schedula-
bility of the slot allocation cannot be as easily checked
as in the previous cases. However, if it is possible to
bound the progressing rate of each sequencer task, the
multi-frame task model [10] can be used to check the fea-

sibility of the schedule. The transformation of a dispatch
table into a multi-frame task is loseless: the slots of a se-
quencer task become the task instances (with execution
times depending on the runnables scheduled in each slot)
and the relative deadline of each task instance is given by
the duration of a slot. Then, assuming the maximum clock
speeds, a multi-frame schedulability test can be applied
(see, for instance, [3, 16]).

5 Conclusion

Today’s automotive design methodologies need to be
adapted to multicore computing and there is a wide range
of technical problems to be solved. The design of the
software architectures and the scheduling of the software
components are among these issues. In this paper, we
have presented practical scheduling solutions well suited
to the basic use-case which is to execute a large number
of software components on the same multicore proces-
sor in order to reduce the number of ECUs. The set of
algorithms described in this paper have shown on real-
istic case-studies to be versatile and efficient in terms of
CPU usage optimization, providing even guaranteed per-
formance levels in some specific contexts. Future work
will consist in extending this framework to handle other
requirements such as precedence constraints, lockstep
redundant executions and distributed timing chains.
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