
Configuration of in-vehicle embedded systems under real-time constraints

Ricardo Santos Marques, Nicolas Navet, Françoise Simonot-Lion
LORIA - INPL

Campus Scientifique, BP 239
54506 Vandoeuvre-lès-Nancy - France

{santos, nnavet, simonot}@loria.fr
tel: +33 3 83 58 17 28, fax: +33 3 83 58 17 01

Abstract

In-vehicle embedded systems typically consist of a set
of nodes exchanging applicative data (“signals”) through
a stack of communication protocols that includes a mid-
dleware layer. On each node, tasks, both applicative
and middleware level, are subject to deadline constraints.
Furthermore, signals must be produced sufficiently re-
cently for being safely consumed on the receiver end (so-
called “freshness constraint”). The goal of this study is to
propose an approach for configuring nodes and communi-
cation protocols that takes these constraints into account.
Precisely, the problem is, on the one hand, to set the char-
acteristics of the middleware tasks and of the set of frames
and, on the other hand, to find a feasible schedule on each
node.

1 Introduction

Context of the study. In-vehicle embedded systems are
made of a set of stations, termed Electronic Control Units
(ECU), interconnected by a communication network as il-
lustrated in figure 1. On each ECU, a set of applicative
level tasks execute control algorithms (e.g. ESP, fuel in-
jection, ACC, etc), most usually, in a periodic manner. Be-
cause functions and sensors are distributed, tasks need to
exchange data, called signals (e.g. the speed of the vehi-
cle) that are packed and sent into network frames when the
producer and the consumer are not located onto the same
ECU.

An efficient approach for easing the integration of
software-based components, as well as their reusability
and portability, is to provide a middleware layer that offers
common services and a common interface. In practice, an
in-vehicle middleware is made up of a set of existing com-
munication protocols and car makers specific layers. The
main goal of the middleware is to provide a set of commu-
nication services that allow to send and receive signals in
an efficient manner (i.e. bandwidth consumption, tempo-
ral constraints). A set of communication services for auto-
motive applications is defined by the industry consortium

OSEK in its OSEK/VDX Communication layer specifica-
tion [10].

One of the major services that an automotive middle-
ware must offer is to pack the signals that are sent by
applicative processes into frames, and to send the frames
at the right points in time for ensuring the deadline con-
straint on each signal. This function, generally called
frame packing, is performed according to an off-line gen-
erated configuration. OSEK/VDX Communication [10]
specifies several frame transmission modes (periodic, di-
rect and mixed); in this study, we will consider the basic
and most important transmission scheme, which is the pe-
riodic transmission mode. Thus, the frame packing and its
sending is not triggered by the production of signals, but
periodically, according to predefined configuration.

Besides constraints on the signals exchanged, applica-
tive tasks are most usually constrained by a relative dead-
line, which is the maximum time interval tolerated be-
tween the activation of an instance of the task and its
end of execution. In order to ensure that all applicative
tasks respect their relative deadline, appropriate schedul-
ing parameters must be assigned to each of them. The
most important of these parameters is the task’s priority,
which is the basis for tasking scheduling decision in the
OSEK/VDX Operating System [11], a standard for event-
triggered automotive applications.

Problem definition. Setting the scheduling and com-
munication parameters on each node is not straightfor-
ward because, on the one hand, applicative level tasks and
middleware share the CPU and thus interfere and, on the
other hand, because the characteristics of the middleware
tasks depend on the frame packing (see Section 2.3). Pre-
cisely, the characteristics of each middleware task must
be known in order to assign a priority to applicative tasks.
However, the characteristics of middleware tasks, espe-
cially their relative deadline and activation rate, depend
on the set of frames resulting from the frame packing
step. But, the frame packing algorithm must in turn con-
sider both the characteristics of applicative and middle-
ware tasks.

Goal of the paper. The goal of this article is to propose
a pragmatic solution to overcome this dependency cycle
and, thus, to allow the configuration of the embedded sys-
tem. The proposed algorithm assigns timing and schedul-
ing characteristics to the set of applicative and middleware
tasks running on each ECU and to the set of frames trans-
mitted over the network, such that, deadline constraints on
tasks and signals will be met whenever possible.

Application Tasks

X Y

X Y�
�
�

�
�
�

���
���
���

���
���
���

Sensor

Actuator

Application Tasks

X Y�
�
�

�
�
�

�
�
�

�
�
�

Sensor

Actuator
X W

X Y	�	
	�	
	�	

�

�

�

�
�
�

�
�
�

O
pe

ra
tin

g
Sy

st
em

M
id

dl
ew

ar
e

Network Controller

ECU 1
O

pe
ra

tin
g

Sy
st

em

M
id

dl
ew

ar
e

Network Controller

ECU i

Figure 1. Part of an in-vehicle embedded
system composed of two Electronic Con-
trol Units (ECUs) and a communication net-
work. Each ECU contains a set of applica-
tive tasks that periodically produce and
consume signals through communication
services provided by a middleware layer.
This layer implements a mechanism that pe-
riodically packs and transmits signals into
network frames.

Previous work. Under the Fixed Priority Preemptive
(FPP) policy, which is the only policy available on
the automotive standard OSEK/VDX Operating System
(OSEK/VDX OS [11]), the Audsley algorithm [1] enables
one to find the optimal priority assignment provided that
all tasks are well characterized which is not the case in
our context. A solution to the problem of frame configu-
ration under schedulability constraints is implemented in
the configuration tools of the middleware Volcano [2], but
the algorithms of this commercial product are not pub-
lished. Several heuristics are presented in [8] to build
a set of frames over CAN [4] that minimizes the band-
width consumption but without explicitly searching a fea-
sible solution. In particular, the problem of deciding the
priorities of the frames is not addressed. More recently,
in [6, 13], solutions that proved to be effective on realis-
tic experiments have been proposed but the interferences
of applicative and middleware tasks are not taken into ac-
count. This study will address the latter point.

Organization of the paper. Section 2 is devoted to the
presentation of the applicative tasks and signals, the mid-
dleware tasks, and the network frames. In section 3, the
approach used to achieve the respect of the signals timing

constraints while configuring tasks and frames is given.
Section 4 introduces the several steps of the configuration
algorithm, and finally, sections 5 and 6 describe the exten-
sions proposed to existing frame packing algorithms, and
the procedures allowing the configuration of the tasks.

2 System model

In the following it is assumed that, on each node, ap-
plicative level tasks and middleware tasks run on top of
the OSEK/VDX OS [11], which is becoming the standard
operating system for event-triggered automotive applica-
tions. Two scheduling policies are offered by OSEK/VDX
OS: Fixed Priority Preemptive (FPP) and Non-Preemptive
Fixed Priority (NPFP). In the remaining of this paper, only
the preemptive FPP policy is assumed for the scheduling
of tasks since it is more efficient in terms of schedula-
bility but the approach can be easily extended to handle
tasks scheduled under NPFP. Since applicative tasks share
memory areas with middleware tasks, a resource synchro-
nization access protocol must be used; we will assume the
use of the Priority Ceiling Protocol (PCP [14]) that is pro-
vided by OSEK/VDX OS.

The communication network is considered to be a pri-
ority bus that might be CAN [4] or the J1850 [12] because
at least one of these buses is today in use in almost all pro-
duction cars. On such networks, each frame is assigned a
priority which will serve for granting bus access according
to the NPFP scheduling policy.

In this context, starting from a given set of timing char-
acteristics of applicative tasks (e.g., periods, deadlines)
and signals (e.g., freshness constraints), the goal of the
configuration step is, on the one hand, to set the charac-
teristics of the middleware tasks and the network frames,
and, on the other hand, to assign a feasible priority to each
applicative task. The results of this configuration step are:

• a static and unique priority assigned to each applica-
tive task,

• the characteristics of the middleware tasks of each
ECU, and

• the frame packing configuration on each ECU.

2.1 Problem input: applicative tasks and signals
The characteristics of applicative tasks and signals con-

stitute the input data for the configuration algorithm. Each
ECU i contains a finite set ∆i = {δi,1, δi,2, ..., δi,j} of
applicative tasks where δi,j symbolizes applicative task j
running on ECU i. Each δi,j is characterized by a tuple
(Cδi,j

, Tδi,j
, D̄δi,j

, si,j , Si,j) where:

• Cδi,j
is the worst-case execution time for task δi,j ,

• Tδi,j
is the minimum inter-arrival time of two succes-

sive instances of δi,j (termed activation period in the
following),

• D̄δi,j
is the relative deadline, that is the maximum

tolerable time interval between the activation of an
instance and the end of execution of this instance,

• si,j is the output signal produced by task δi,j that is
characterized by its size Csi,j

in bits. Its production
period is equal to the period of task δi,j ,

• and Si,j is the set of signals consumed by δi,j that
are characterized by pairs (si′,j′ ,F

si′,j′

δi,j
) where

– si′,j′ is a signal produced in ECU i′ by applica-
tive task δi′,j′ , and

– F
si′,j′

δi,j
is the freshness constraint requested by

δi,j on signal si′,j′ .

This freshness constraint imposes a limit on the maximum
age of the signal value. Precisely, the time interval be-
tween the consumption of a signal value and the activation
of the instance of the task that produced that value, must
be less than, or equal to, the freshness constraint. For in-
stance, the number of RPM needed to compute the speed
of the vehicle must have been read at the engine controller
no more than 20ms before the speed is used by the active
suspension. It is assumed that input data of a task is col-
lected upon its activation since it is the first time instant
where the task can begin to be executed.

Figure 2 illustrates this constraint with respect to signal
si′,j′ : when an instance of applicative task δi,j consumes
the value α, its age must be smaller than or equal to the
freshness constraint F

si′,j′

δi,j
.

2.2 Problem output: network frames
Starting from the signals, the frame packing step

will produce a set of frames that minimizes bandwidth
consumption and respects temporal constraints. Each
frame fi,k belonging to the set of frames Fi, trans-
mitted by ECU i, will be characterized by a tuple
(Cf,i,k

, Tfi,k
, D̄fi,k

, Sfi,k
, Pfi,k

) where:

• Cfi,k
is the size of fi,k in bits,

• Tfi,k
is the transmission period,

• D̄fi,k
is the relative deadline defining the maximum

time interval tolerated between the transmission re-
quest and the reception of the frame at all nodes,

• Sfi,k
is the set of signals composing frame fi,k, and

• Pfi,k
is the priority of fi,k, unique on the whole sys-

tem, for the Medium Access Control protocol.

2.3 Problem output: characteristics of middleware
tasks

OSEK/VDX OS conformance requires that at least 16
tasks (or even 8 with other conformance classes) can be
handled by the OS. Thus, for the sake of portability, the
number of tasks, including middleware tasks, must not be

Activation of the task
instance that

produces value

Consumption of
value

≤ F
s

i′,j′

δi,j

≤ F
s

i′,j′

δi,j

s
i′,j′

α

s
i′,j′

α

α

α

t

t

t

t

t

network

δ
i′,j′

δi,j

MW ′

MW

D̄δ
i′,j′

= Tδ
i′,j′

D̄δi,j
= Tδi,j

α

α

Figure 2. Scenario in which applicative task
δi,j consumes signal si′,j′ produced by ap-
plicative task δi′,j′ . The configuration of ap-
plicative and middleware tasks and of the
network frame must guarantee that the age
of the values of si′,j′ respects the freshness
constraint F

si′,j′

δi,j
associated to si′,j′ . Dou-

ble square boxes represent a network frame
that, in this case, carries value α.

greater than 16 or 8, depending on the conformance class
(see [11] for more details).

Given this strong constraint, in the following, we as-
sume that the middleware is implemented in two distinct
tasks. A task is responsible for handling time-triggered
events, OSEK/VDX OS alarms for periodic transmission
in the following, and the other is in charge of event-
triggered ones, frame arrival interrupts in the following.
This way, one maximizes the number of possible applica-
tive level tasks on each ECU.

Precisely, the first middleware task is responsible for
unpacking newly arrived frames and for writing the sig-
nal values at the right memory areas. On CAN, the clocks
on the different ECUs are unsynchronized and the exact
time interval between two consecutive frame arrivals can-
not be determined. The first task is thus considered as
sporadic [5] where its activation period is equal to the time
needed to transmit the smallest frame that can be received.
The configuration of this task, denoted ωi in ECU i, is
given by a tuple (Cωi

, Tωi
, D̄ωi

, Sωi
) where:

• Cωi
is the time needed to execute ωi,

• Tωi
is the activation period representing the smallest

time interval between two consecutive activations,

• D̄ωi
is the relative deadline defining the maximum

time interval accepted between the activation and the
end of execution of ωi, and

• Sωi
is the set of signals that ωi updates: Sωi

=⋃
j

Si,j (i.e. the set of signals consumed by ECU i).

The second middleware task is responsible for transmit-
ting frames, and therefore, its characteristics depend on
the frame packing configuration. This task can be imple-
mented as a multiframe task introduced in [7]. This type
of task is characterized by a unique activation period and
a set of different execution times corresponding to succes-
sive instances of the task. In our case, this middleware task
has different execution times because successive instances
transmit a different set of frames. The configuration of this
task in each ECU i, denoted φi, is characterized by a tuple
(Cφi

, Tφi
, D̄φi

) where:

• Cφi
= {c

(0)
φi

, c
(1)
φi

, ..., c
(n−1)
φi

} is a set of n execution
times; the execution time of instance a of task φi is
given by c(a mod n) where a ≥ 0, and the execution
time of subsequent instances is obtained by cycling
through the set Cφi

in order,

• Tφi
is the activation period defining the minimum

time interval between two consecutive activations,
and

• D̄φi
is the relative deadline identifying the maximum

time interval tolerated between the activation and the
end of execution of task φi.

From the frame packing configuration, one derives
the execution times and the activation period of the
multiframe task φi as follows. Let the set Qi =
{(Qfi,1

, Tfi,1
), ..., (Qfi,k

, Tfi,k
)} where Qfi,k

is the
time needed to construct and request transmission of
frame fi,k, and Tfi,k

is the transmission period of the
frame. The activation period of φi, Tφi

, is simply
gcd(Tfi,1

, ..., Tfi,k
). For each activation date during the

first hyperperiod, lcm(Tfi,1
, ..., Tfi,k

), one determines
the frames that are to be sent and, thus, the set of exe-
cution times for φi:

∀ 0 ≤ a ≤ lcm(Tfi,1
, ..., Tfi,k

)/Tφi
− 1,

c
(a)
φi

=
∑

{k | a·Tφ modTfi,k
=0}

Qfi,k

It is assumed that these two middleware tasks have the
two highest priorities. In the first place, since communica-
tion services are the most priority on each ECU, it avoids
losing frames due for instance to buffer overflow. On the
other hand, middleware tasks can prevent a faulty task
from jeopardizing the system’s behaviour, for instance, by
consuming all the CPU time due to a software bug.

With OSEK/VDX OS, ISRs have necessarily a higher
level of priority than tasks. In our context ωi has a higher
priority than φi. This is justified by the fact that the frame
reception task ωi would be most efficiently implemented

as an OSEK/VDX OS interrupt service routine (ISR) trig-
gered by the communication controller interrupt, while
the task φi, which is activated periodically by the OSEK
alarm services, would be implemented as a classical OS
task.

3 Guaranteeing freshness constraints

The aim is to guarantee that any signal will meet its
freshness constraints at the time when it is consumed.
Since nodes are not synchronized, all consumption times
are possible. One has thus to ensure that at any time, the
value of a signal that is available to tasks, respects its con-
straints.

The maximum age that any instance of signal si′,j′ can
reach is the longest time duration between the activation
of the producer task instance and the moment where the
value of the signal is updated at the receiver end (avail-
ability of the next instance of the signal). Our approach
aims to ensure that the maximum age of any signal avail-
able for consumption is less than, or equal to, its freshness
constraints.

3.1 Characterization of the maximum age
To determine the maximum age of a signal value let us

introduce:

• Aδi′,j′,n
, the activation instant of the n-th instance of

task δi′,j′ , and

• R
si′,j′

ωi , the worst-case end-to-end response time for
signal si′,j′ that is the longest time between the in-
stant at which middleware task ωi writes a value of
signal si′,j′ in shared memory, and the activation in-
stant of the instance of the applicative task that pro-
duced the value.

Figure 3 illustrates the case where the age of a signal is
maximized. One denotes by si′,j′,n, the n-th produced
value of signal si′,j′ . It starts to age at the n-th activation
of its producer task, that is, at instant Aδi′,j′ ,n

.
Value si′,j′,n will be updated by si′,j′,n+1, produced

by the task instance activated Tδi′,j′
units of time after

Aδi′,j′,n
. In the worst case, value si′,j′,n+1 is written by

the middleware task ωi in shared memory R
si′,j′

ωi units of
time later. Value si′,j′,n is then updated Tδi′,j′

+ R
si′,j′

ωi

units of time after the activation of its producer task in-
stance. This is therefore the maximum age that any value
of signal si′,j′ can reach.

One denotes F̄si,j = min
∀y,z | si,j∈Sy,z

(F
si,j

δy,z
), the most

stringent freshness constraint for signal si,j . To guarantee
that every signal si,j respects F̄si,j , the following equa-
tion must be verified:

∀ i, j, x, si,j ∈ Sωx
Tδi,j

+ Rsi,j
ωx

≤ F̄si,j (1)

maximum age of any value of

s
i′,j′ ,n

s
i′,j′ ,n

s
i′,j′,n

s
i′,j′ ,n+1

s
i′,j′,n+1

s
i′,j′ ,n+1

s
i′,j′,n+1

Tδ
i′,j′

s
i′,j′,n

t

t

t

t

network

δ
i′,j′

φ
i′

ωi

Tδ
i′,j′

R
s

i′,j′

ωi

A
i′,j′ ,n

s
i′,j′

Figure 3. Illustration of the maximum age
that the signal si′,j′,n can reach. Its age be-
gins at Aδi′,j′,n

, the n-th activation of its pro-
ducer task. In the worst case, the next in-
stance of the signal, si′,j′,n+1, is available
Tδi′,j′

+ R
si′,j′

ωi units of time later. The max-
imum age that any signal si′,j′ can reach is
Tδi′,j′

+ R
si′,j′

ωi . Double square boxes repre-
sent a network frame.

The period of production of the signal, Tδi,j
, is in-

herited from its producer applicative task. The value of
the worst-case end-to-end response time R

si,j
ωi depends on

the characteristics of applicative and middleware tasks,
frames and the scheduling on ECUs and network. In the
rest of the paper, we propose an algorithm that will try to
configure the system in such a way that equation 1 is met.

3.2 Worst-case end-to-end response time of a signal
The end-to-end response time of a signal si′,j′ , illus-

trated in figure 4, depends on:

1. the interval needed by the applicative task to produce
the signal (response time of the task),

2. the activation time of the middleware task that will
build up the frame and request its transmission. Pre-
cisely, it depends on the time between the production
of the signal (end-of-execution of the producer task)
and the activation of the middleware task that will
actually send the frame containing the signal,

3. the response time of the middleware task sending the
frame,

4. the response time of the frame containing the signal,

5. the time needed to unpack the frame at the receiver
end and make the signal available to consumer tasks.

Durations 1,3,4 and 5 are mutually independent so the
worst-case situation occurs with the maximum of these
durations. The worst-case response time of the applicative

task, Rδi′,j′
, can be computed using classical FPP schedu-

lability analysis with PCP protocol [16] (since memory ar-
eas are shared between applicative and middleware tasks)
and higher priority multiframe and sporadic tasks [7, 15].
The worst-case response time of the sending middleware
task, Rφi′

, is computed in a similar manner, the only
higher priority workload being the middleware task that
unpacks incoming frames. As explained in 2.3, this latter
task can be conveniently implemented as an OSEK/VDX
ISR. The worst-case response time of the frame contain-
ing the signal, Rfi′,k′ , is determined using the NPFP re-
sponse time analysis proposed by Tindell et al [17]. Fi-
nally, the worst-case time needed to unpack the frame at
the receiver end, Rωi

, is simply the execution time of the
ISR that takes into account the longest critical section of
the applicative tasks [14].

Duration 2 depends on the periods of the applicative
level task, Tδi′,j′

(input data of the problem), and the
frame containing the signal, Tfi′,k′ (results of the frame
packing algorithm). The aim is to evaluate the worst-case
interval between the availability of the signal and the ac-
tivation of the middleware task that will send the frame.
Two cases arise:

1. Tδi′,j′
< Tfi′,k′

2. Tδi′,j′
≥ Tfi′,k′

Case 1 implies that some produced signals will be lost
and it is thus ruled out since the frame packing algorithm
must avoid this. In case 2, the maximum delay cannot
be larger than Tfi′,k′ , corresponding to the scenario where
the signal is available immediately after the activation of
the middleware task.

The expression for the worst-case end-to-end response
time of a signal si′,j′ is thus simply: R

si′,j′

ωi = Rδi′,j′
+

Tfi′,k′ + Rφi′
+ Rfi′,k′ + Rωi

where si′,j′ ∈ Sωi
and

si′,j′ ∈ Sfi′,k′ .

4 Configuration algorithm

The goal of the configuration algorithm is 1) to charac-
terize applicative and middleware tasks and frames and 2)
to define the relative priorities for the scheduling on ECUs
and network, in such a way that, the worst-case end-to-end
response time of each signal and the deadline of each task
is met.

In order to assign priorities to applicative tasks, one
needs to characterize the middleware tasks to precisely
quantify their interference. The parameters of these mid-
dleware tasks depend on the result of the frame packing
algorithm. But, the frame packing algorithm needs the
knowledge of the worst-case response times of applicative
and middleware tasks in order to assign a deadline to each
frame that guarantees the signal freshness constraint. To
overcome this dependency cycle, we propose a three-step
algorithm that is presented in figure 5.

Tf
i′,k′Tf

i′,k′

R
s

i′,j′

ωi

Rδ
i′,j′

Tδ
i′,j′

δi′,j′

α t

φi′

β

Tφ
i′

Tφ
i′

t
β

si′,j′

fi′,k′fi′,k′
α

fi′,k′

β
tfi′,k′

αβ
fi′,k′fi′,k′

network

ωi

β α tsi′,j′ si′,j′βsi′,j′

Rφ
i′

Tf
i′,k′Rδ

i′,j′
Rf

i′,k′ Rωi

Figure 4. Scenario leading to the worst-case end-to-end response time R
si′,j′

ωi of signal si′,j′ , from
the activation of its producer task δi′,j′ until the moment it is available for consumption in the
receiver end. Shadowed boxes represent resp. the execution and the transmission of middleware
tasks, resp. frames, that are not involved in the exchange of si′,j′ .

Tasks and frames
configuration

feasible configuration
Construction of a

of frames
Success

Configuration of
middleware tasks

Determination of a
feasible priority
allocation for

application tasks

Failure

Fail Fail Success

Figure 5. Steps of the algorithm for the
configuration of applicative and middleware
tasks, and network frames.

The first step is the execution a frame packing algo-
rithm such as the Bi-Directional Frequency Fit (BDFF)
from [13] or the Bandwidth Best Fit decreasing (BBFd)
from [6]. Basically the idea is to find the frame config-
uration (signals composing a frame, period and deadline
of the frames) that minimizes the bandwidth consump-
tion while meeting feasibility constraints. The algorithms
in [13] and [6] do not consider the delays induced by ap-
plicative and middleware tasks. To take these delays into
account and break the dependency cycle, we assume that
the worst-case tolerated behaviour occurs. If freshness
constraints are met under these assumptions, they will be
necessarily met with the actual worst-case response times.
The successful output of this step is a feasible global
frame configuration. When no feasible configuration is
found, the freshness constraints have to be relaxed or the

applicative tasks re-designed.
The second step consists of setting the parameters of

the middleware tasks of each ECU starting from the frame
configuration. Precisely, one has to determine the execu-
tion time and activation period.

Finally, third step tries to determine a feasible prior-
ity allocation for the set of applicative tasks of each ECU.
One will make use of the Audsley priority assignment al-
gorithm presented in [1]. It must however be taken into
account that middleware tasks have the two highest prior-
ities. If no feasible priority allocation is obtained, either
the task set or the constraints have to be re-worked.

5 Extensions to existing frame packing al-
gorithms

This section details the extensions proposed to existing
frame packing algorithms like BDFF [13] or BBFd [6].
These algorithms construct the set of frames sent by each
ECU from the set of signals, such that, the freshness con-
straints associated to signals are met and the bandwidth
consumption is minimized.

Steps of the frame packing algorithms. They are com-
posed of two distinct parts as illustrated in figure 6. The
first part aims at constructing a set of frames whose char-
acteristics minimize the bandwidth consumption. In [13]
and [6], the algorithms involved have similarities with the
bin-packing problem [3] but the aim is to reduce the band-
width usage instead of the number of boxes. The second

part deals with the schedulability of the proposed solution
that is tested with the Audsley algorithm1. If the feasibil-
ity test fails then a frame decomposition scheme tries to
split frames in such a way that the deadlines of the frames
are increased and some workload is moved at lower pri-
ority levels, augmenting thus the likelihood of obtaining a
feasible solution.

set of frames
Feasibility

test
Success

Fail

Success Fail

Construction of a

of a decomposition

applicative and middleware
Continue to

tasks configuration

Failure
Execution

algorithm

Figure 6. Description of a frame-packing
strategy [13, 6]. The first step aims at
constructing a solution that minimizes the
bandwidth consumption. The second step
deals with the feasibility of the solution. If
no priority allocation exists then a frame de-
composition algorithm is executed.

While the set of frames is being built, to decide if a sig-
nal can be inserted in a specific frame, the deadline of the
frame with this signal is determined. However, this com-
putation does not take into account the delays induced by
applicative and middleware tasks, and the same problem
exists in the decomposition scheme.

Worst-case scenarios. In the following, extensions for
considering the worst-case delays induced by the tasks
participating in a signal exchange are presented. The ex-
change of a signal involves the execution of tasks on the
sender and receiver sides. Let us examine the exchange of
signal si′,j′ carried by frame fi′,k′ .

• Receiver side: middleware task ωi

The only task involved on the receiver end is the one re-
sponsible for the handling of fi′,k′ , task ωi in figure 4,
which has the highest priority on each ECU. Its worst-
case response time is simply its worst-case execution time
plus the maximum blocking time due to shared resources,
that is, as PCP is used, the longest critical section for con-
suming signals of the applicative tasks running in ECU i.

1The Audsley algorithm [1] has been shown in [13] to be also optimal
for NPFP if the blocking factor (i.e. the maximum time interval during
which one frame can be delayed by a lower priority frame) is equal for
all frames. In our context, we assume the existence of at least one low-
priority frame having the largest size allowed by the protocol. Indeed,
in automotive systems, diagnostic and network management frames of
arbitrary size are also exchanged in addition to the real-time traffic.

• Sender side: middleware task φi′

On the sender side, middleware task φi′ , see figure 4,
transmits fi′,k′ . We assume a worst-case scenario consist-
ing of fi′,k′ and a one-signal-per-frame packing (for all
signals not in fi′,k′), and thus, as almost many transmis-
sion requests as signals. The blocking time due to shared
resources is equal to the longest critical section for pro-
ducing signals of the applicative tasks running in ECU i′.
In addition, it suffers from the interference of the higher
priority task ωi′ , whose worst-case scenario will be dis-
cussed later.

• Sender side: applicative task δi′,j′

The applicative task δi′,j′ produces si′,j′ . Its worst-case
execution scenario occurs when it runs at the lowest pri-
ority level such that D̄δi′,j′

is respected. In addition to the
higher priority applicative tasks and blocking time (shared
memory areas for storing produced data and reading sig-
nals for consumption), the worst-case response time must
take into account the maximum interference of middle-
ware tasks φi′ and ωi′ .

• Sender side: middleware task ωi′

Task ωi′ , with the highest priority, does not participate di-
rectly in the exchange of si′,j′ but it interferes with all
tasks running on ECU i′. Its worst-case scenario is the
handling of the largest frame that can be consumed in
ECU i′ with an activation period equal to the time needed
to transmit the smallest frame that is consumed in ECU i′.

Frame deadline. From the delays corresponding to the
worst-case scenario, the frame deadline can be set. The
frame deadline that is needed for guaranteeing the fresh-
ness of a signal, is the largest value such that equation 1 is
met (see section 3.1). Then, the deadline of the frame is
simply the most stringent deadline constraint induced by
the signals composing the frame.

6 Configuration of applicative and middle-
ware tasks

This section explains how the characteristics of the
middleware and applicative tasks are obtained after the
frame packing configuration step.

Middleware tasks. Since the priorities of middleware
tasks are already defined due to implementation and ef-
ficiency constraints (see 2.3), one has just to determine
their execution time, activation period and relative dead-
line needed for the schedulability analysis. On each ECU
i, the worst-case characteristics of task ωi are the follow-
ing:

• Cωi
is the time necessary to handle the largest frame

that ωi can receive,

• Tωi
is the time to transmit the smallest frame that

ECU i can receive,

• D̄ωi
is equal to Tωi

, otherwise frames can be lost.

The characteristics of task φi are :

• Cφi
and Tφi

are implied by the frame packing con-
figuration as explained in section 2.3,

• D̄φi
is equal to Tφi

, otherwise a set of frames may
suffer a delay caused by the sending of a previous
set of frames. This is not taken into account since
it corresponds to a situation where applicative tasks
cannot execute and, thus, cannot produce signals to
be transmitted.

Applicative tasks. A feasible priority allocation for the
set of applicative tasks is searched for with the optimal
Audsley algorithm [1]: if a solution exists then it will nec-
essarily be found. The strategy is to start from the lowest
priority (m) and to look for a task that is feasible at this
level. In case of failure, one can conclude that the set of
tasks is not schedulable. The first feasible task at level m
is assigned to that priority, then the algorithm tries to find
a feasible task at level m−1, and so on until priority 1, the
highest priority of the system. Besides other higher prior-
ity tasks, the feasibility test (i.e. worst-case response time
computation) used in the Audsley algorithm must consider
the blocking time caused by the PCP protocol.

Conclusion

In this study, a method for the configuration of in-
vehicle embedded systems is proposed. Scheduling pa-
rameters are assigned to applicative and middleware tasks
and to network frames in such a way that, tasks and sig-
nals timing constraints are respected. All the technical
elements used in this study (FPP and NPFP feasibility,
Audsley algorithm, frame packing strategies, ...) are well
known but, to our best knowledge, such a comprehensive
approach is original and of practical interest.

The proposed method runs in three steps. The first
is the execution of an existing frame packing algorithm
that constructs a feasible and bandwidth minimizing set
of frames. Some extensions are proposed to take into ac-
count the delays induced by applicative and middleware
tasks. These extensions are based on worst-case scenar-
ios, since while the frame packing is executing, the precise
scheduling parameters of the tasks are not known. The
second step is the configuration of middleware tasks. The
final step tries to determine a feasible scheduling for ap-
plicative tasks.

We are currently working on a tool that generates the
OSEK Implementation Language configuration [9] corre-
sponding to the best solution found. It will help to autom-
atize the design of validated automotive embedded sys-
tems.

References

[1] N. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
Report YCS164, University of York, November 1991.

[2] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg.
Volcano - a revolution in on-board communications. Tech-
nical report, Volvo, 1999.

[3] E. Coffman, M. Garey, and D. Johnson. Approximation
algorithms for bin packing: a survey, pages 46–93. PWS
Publishing Co., Boston, MA, USA, 1996.

[4] ISO. ISO 11898 - Road vehicles - Interchange of digital in-
formation - Controller Area Network for high-speed Com-
munication. International Standard Organization, 1994.
ISO 11898.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1):46–61, 1973.

[6] R. S. Marques, N. Navet, and F. Simonot-Lion. Frame
packing under real-time constraints. In 5th IFAC Interna-
tional Conference on Fieldbus Systems and their Applica-
tions - FeT’2003, Aveiro, Portugal, pages 185–192, July
2003.

[7] A. Mok and D. Chen. A multiframe model for real-time
tasks. In RTSS ’96: Proceedings of the 17th IEEE Real-
Time Systems Symposium (RTSS ’96), page 22. IEEE Com-
puter Society, 1996.

[8] C. Norström, K. Sandström, and M. Ahlmark. Frame
packing in real-time communication. Technical report,
Mälardalen Real-Time Research Center, 2000.

[9] OSEK Consortium. OIL:OSEK implementation language,
version 2.5, July 2004. Available at http://www.
osek-vdx.org.

[10] OSEK Consortium. OSEK/VDX communication speci-
fication, version 3.0.3, July 2004. Available at http:
//www.osek-vdx.org.

[11] OSEK Consortium. OSEK/VDX operating system, ver-
sion 2.2.3, February 2005. Available at http://www.
osek-vdx.org.

[12] SAE. SAE J1850 standard, class B data communications
network interface, May 1994.

[13] R. Saket and N. Navet. Frame packing algorithms for au-
tomotive applications. Technical Report INRIA RR-4998,
2003. Available at http://www.inria.fr/rrrt/
rr-4998.html.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inher-
itance protocols: An approach to real-time synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
1990.

[15] H. Takada and K. Sakamura. Schedulability of general-
ized multiframe task sets under static priority assignment.
In RTCSA ’97: Proceedings of the 4th International Work-
shop on Real-Time Computing Systems and Applications
(RTCSA ’97). IEEE Computer Society, 1997.

[16] K. Tindell. An extendible approach for analyzing fixed
priority hard real-time tasks. Technical Report YCS189,
University of York, 1992.

[17] K. Tindell, A. Burns, and A. Wellings. Calculating Con-
troller Area Network (CAN) message response times.
Control Eng. Practice, 3(8):1163–1169, 1995.

