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Abstract. The set of frames exchanged in automotive applications must meet two constraints: it has to be feasible from a
schedulability point of view and it should minimize the network bandwidth consumption. This latter point is important since
it allows the use of low cost electronic components and it facilitates an incremental design process. The purpose of this study
is to propose efficient algorithms for solving the NP-hard problem of generating a set of schedulable frames that minimize
the bandwidth usage. This study presents novel algorithms for building bandwidth-minimizing sets of frames that meet the
schedulability requirement. In our experiments, these proposals have proved to be more effective than the existing approaches.
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1. Introduction

Context of the study. Application processes in the
different Electronic Control Units (ECUs) of a vehicle
send and receive elementary pieces of information, that
are called signals, over the network. Typical examples
of such signals are the Revolution Per Minute (RPM)
value and the speed of the vehicle. Signals have usu-
ally a small size and several of them can be transmitted
in the same frame so as to minimize bandwidth con-
sumption. In-vehicle applications are subject to strin-
gent time constraints and most signals have a limited
lifetime. This study proposes algorithms for building
off-line the set of frames in automotive communica-
tions with the two objectives of minimizing the band-
width consumption and ensuring the respect of timing
constraints. At run-time, the packing of the frames ac-
cording to the configuration and their transmission at
the right point of time is usually performed by a mid-
dleware layer that masks the communication system
services to producer and consumer processes.

∗Corresponding author. N. Navet, Tel.: +33 3 54958463; Fax:
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Definition of the problem. Knowing the set of
ECUs and for each ECU the set of signals that are to
be sent over the network, their size, their deadline and
their production period, the problem consists in build-
ing the set of the frames. This comes to define the set
of signals composing each frame as well as to decide
their characteristics of emission. In the case of a pri-
ority based Medium Access Control (MAC) protocol
such as the Controller Areal Network (CAN), which is
a de-facto standard in automotive applications [10], the
priority of each frame has to be chosen and those pri-
ority choices will clearly have an impact on the respect
of the deadlines.

In addition to schedulability, the set of frames must
be constructed with the objective of minimizing the
bandwidth consumption. The first reason lies on the
fact that the possibility of adding new functionalities
under the form of one or several additional ECUs must
be preserved knowing that adding more ECUs implies
that more signals will be exchanged on the bus. Such
an incremental design is a standard procedure in the
automotive industry. The second reason to minimize
the bandwidth consumption is to allow the use of low
power processors, which are less expensive, and to
decrease the frequency of transmission errors due to
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EMI (Electro-Magnetic Interferences) if a lower net-
work data rate is possible. The problem to solve is to
find a configuration of frames under schedulability and
bandwidth minimization constraints. This problem is
known to be NP-hard (see [11] for a proof) and, as it
will be shown, it cannot be solved using an exhaustive
approach even for a small number of signals and/or
ECUs. The solution is thus to find efficient heuristics.

Existing work. The frame packing problem has not
been extensively studied in the literature and particu-
larly when real-time constraints are matter of concern.
In [11], several heuristics are presented to build a set of
frames exchanged over a CAN network in such a way
as to minimize the bandwidth consumption but with-
out considering the schedulability of the solution. The
configuration tools of the middleware Volcano (see [3])
provides solutions that takes account of the feasibil-
ity but the algorithms implemented by this commercial
product are not published. The frame packing problem
has been recently studied in [13] for distributed systems
made of both time-triggered and event-triggered net-
works interconnected via gateways but bandwidth con-
sumption was not an objective to achieve. To our best
knowledge, the only publically available study present-
ing solutions to our problem in the context of priority
based MAC protocols is [7] where two complementary
strategies have been proposed. The first one, termed
Bandwidth-Best-Fit decreasing (BBFd), can be applied
to large sized problems in the context of in-vehicle ap-
plications (several hundreds of signals). The second
one, termed the “semi-exhaustive” heuristic (SE) has
proved to be slightly more efficient in the experiments
but its use is limited to small size problems (less than 12
signals emitted by each stations). The first algorithm
is inspired from “bin-packing” algorithms (see [4] for
a survey) while the second one is an exhaustive search
through the solution’s space where one would cut some
branches that are judged not promising.

Contribution of the paper. In this paper, two algo-
rithms are proposed. The first one is a greedy algorithm
for building the set of frames starting from the set of
signals. Its complexity is compatible with large size
problems. The second algorithm takes as input an un-
feasible set of messages and tries to transform it into a
feasible one. The strategy is to lower the deadline con-
straints of the frames by isolating the most demanding
signals. Another contribution of the paper is a proof
that the Audsley algorithm can be used for optimally al-
locating priorities in the context of priority based MAC
if the blocking factor (see paragraph 2.2) is the same
for the whole message set.

In this study, the performance metrics are the net-
work bandwidth consumption and the capability to find
schedulable solutions. Our proposals will be evalu-
ated by comparison with the algorithm presented in [7]
wich has proved to be much more effective than ‘bin-
packing’ heuristics and than a naive strategy consisting
in having one signal per frame.

Organization of the paper. Section 2 is devoted to
a formal description of the problem, the assumptions
and notations are given and the complexity of an ex-
haustive approach is derived. In the same section, we
also explain how to set the priorities of the frames in
an optimal way and prove the correctness of the ap-
proach. In Section 3, the Bi-Directional Frequency Fit
algorithm (BDFF) is described and its performance are
assessed. Finally, in Section 4, a new decomposition
strategy is proposed for transforming a non-feasible set
of messages into a feasible one.

2. Problem statement

The problem is to construct a set of frames F =
{f1, f2, . . . , fk} from a given set of signals S =
{s1, s2, . . . , sn} such that the resulting set of frames
on each station is schedulable, which means that none
of the signals transmitted miss its deadline, while uti-
lizing as little bandwidth as possible. The location of
application processes is fixed so each signal is associ-
ated to the station that produces it. Each signal si has
a tuple consisting of 4 values: (Ni, Ti, Ci, Di) where

– Ni denotes the station containing the signal,
– Ti is the period of production of the signal at that

station. In practice the clocks of the stations are
not synchronized but we assume that the first pro-
duction of all signals located on the same ECU
takes place at the same time,

– Ci is the size of of the signals in bits. It is assumed
that Ci is smaller than the maximum data size of
the frame (segmentation issues are not taken into
account),

– Di is the deadline relative to the production time of
the signal si, it is the maximum duration between
the production of the signal on the sender side and
its reception by all consumers. In this paper we
assume that the deadline of a signal is equal to
the production period (Di = Ti) but the proposed
strategies are still valid for deadlines smaller than
the period.
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The communication network is a priority bus that
might be CAN [5], VAN [6] or the J1850 [15]. In
the following, the numerical results are obtained with
a CAN network at 500kbits/s. The standard CAN data
frame (CAN 2.0A, see Fig. 1) can contain up to 8 bytes
of data for an overall size of, at most, 135bits, including
all the protocol overheads. The sections of the frames
are:

– the header field, which contains the identifier of
the frame, the Remote Transmission Request bit
that distinguishes between data frame (RTR set to
0) and data request frame (RTR set to 1) and the
Data Length Code (DLC) used to inform of the
number of bytes of the data field,

– the data field having a maximum length of 8 bytes,
– the 15 bit Cyclic Redundancy Check (CRC) field

which ensures the integrity of the data transmitted,
– the Acknowledgment field (Ack). On CAN, the

acknowledgment scheme solely enables the sender
to know that at least one station, but not necessar-
ily the intended recipient, has received the frame
correctly,

– the End-of-Frame (EOF) field and the intermission
frame space which is the minimum number of bits
separating consecutive messages.

The exact size of the CAN frame overhead is
dependent of the data because of the ‘bit-stuffing’
mechanism.1 Each CAN frame contains up to 8 data
bytes and we consider an overhead of 64 bits, which is
a reasonable value.

Each frame resulting from the packing will contain
a given set of signals that do not change over the suc-
cessive transmissions of the frame. A frame is charac-
terized by the tuple (N

′
i , T

′
i , C

′
i , D

′
i) where,

– N
′
i denotes the station that sends the frame.

– T
′
i is the frame transmission period at that station.

This period is the smallest of the periods of the
signals contained in the frame.

– C
′
i is the size of the frame in bits. It is the sum of

all the signal sizes and a constant overhead fixed
to 64 bits.

– D
′
i is the deadline of the frame which depends on

the signals composing the frame,

1Bit stuffing is an encoding method that enables resynchronization
when using Non-Return-to-Zero (NRZ) bit representation where the
signal level on the bus can remain constant over a longer period of
time (e.g. transmission of ‘000000..’). Edges are generated into the
outgoing bit stream in such a way to avoid the transmission of more
than a maximum number of consecutive equal-level bits (5 for CAN).

– P
′
i is the priority of the frame for the MAC proto-

col.

It is usual in automotive networks that a part of the
traffic has no real-time constraints (for instance, diag-
nosis frames) and such frames are assigned a priority
lower than all real-time frames. Without further knowl-
edge off the application, it is assumed that these frames
have a size of 128 bits (8 bytes of data plus the over-
head), which will be the blocking factor for all real-time
frames (i.e. the maximum time interval during which
one frame can be delayed by a lower priority frame).

2.1. Problem complexity

The problem of building frames from signals is sim-
ilar to the ‘bin-packing’ problem and it was proven to
be NP-hard in [11]. Nevertheless on small size prob-
lems an exhaustive approach might be used. One thus
has to determine the exact complexity of our specific
problem.

To group a set of n signals in k non-empty frames
comes to create all the partitions of size k from the set
of signals. The complexity of this problem is known,
it is the Stirling number of the second kind (see [1,
p. 824]):

1
k!

k∑

i=0

(−1)(k−i)
(
k
i

)
in

The number k of frames per station can vary from 1
to n where n is the number of signals produced by the
station. The number of frames to envisage on a station
i that produces n signals is thus:

Si =
n∑

k=1

1
k!

k∑

i=0

(−1)(k−i)
(
k
i

)
in

For example, three signals a, b, and c on a same
station leads to five different partitions : [(a, b, c)],
[(a), (b, c)], [(a, b), (c)], [(a, c), (b)] and [(a), (b), (c)].

If we consider a set of m stations, the solutions space
becomes

∏
i=1..m Si where Si is the number of possible

frames for station i. The solutions space grows very
quickly as soon as n and m increase. For instance, with
10 signals per station (Si = 115975) and 5 stations, an
exhaustive search would need to consider about 2 ·1025

cases. Moreover, this evaluation did not take account
of the determination of frame priority. One can see
that for real industrial cases an exhaustive approach
cannot be applied. This justifies the design of specific
heuristics.
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SOF : Start Of Frame
EOF : End Of Frame
Ack : Acknowledgement
Inter : Intermission

1 bit

18 bits
Standard CAN (2.0A)

0..8 bytes 15 bits 3bits 7 bits 3bits

Header Application dataSOF CRC field Ack EOF Inter

... idle idle ...

Fig. 1. Format of the CAN 2.0A data frame.

2.2. Optimal priority allocation

Under the Fixed Priority Preemptive (FPP) policy,
the response time of a task only depends on the set of
higher priority tasks and not on the relative priorities
between these higher priority tasks. Starting from this
observation, Audsley proposed in [2] a priority alloca-
tion algorithm that runs in O(n2) where n is the number
of tasks. This algorithm is optimal: if a solution exists
then it will necessarily be found by the algorithm. The
strategy is to start from the lowest priority level (m)
and to search a task that is feasible at this priority level.
In case of failure, one can conclude that the set of tasks
is not schedulable. The first feasible task at level m

is assigned to that priority. Once the priority level m

is given to a task, the algorithm tries to find a feasible
task at level m − 1 and so on until priority 1 which is
the highest priority of the system.

In the general case this algorithm cannot be applied
to message scheduling under the Non-Preemptive Fixed
Priority (NPFP) policy which is the medium access
algorithm for priority buses. Indeed, on a network the
response time of a frame not only depends on the higher
priority frames but also on the set of lower priority
frames because of the blocking factor (maximal time
interval during which one frame can be delayed by a
lower priority frame). In our particular context the
blocking factor is equal for all frames since we assume
the existence of a non real-time traffic (e.g. diagnostic
frames). Without any other assumptions on this traffic,
one must consider the blocking factor as being the size
of the largest frame compliant with the communication
protocol. In this case, the conditions are fulfilled to
apply the Audsley algorithm in order to evaluate the
schedulability of a set of frames. The proof that the
Audsley algorithm is optimal in our context in given in
Appendix B.

3. The Bi-directional frequency fit heuristic

The name of this algorithm has been given by anal-
ogy with the terminology used in ‘bin-packing’ prob-
lems with off-line resolution (Best-Fit decreasing –
First-Fit decreasing, see [4]). In ‘bin-packing’ prob-
lems, the objective is to minimize the number of boxes
(of frames here). In our context the goal is to minimize
the network bandwidth consumption without taking ac-
count of the number of frames.

3.1. Rationale of the algorithm

The motivation for proposing a new algorithm for
this problem comes from the performance analysis
of the Bandwidth-Best-Fit decreasing (BBFd) which,
in [7], proves to be much more effective than other a pri-
ori possible strategies (“one signal per frame”, “First-
Fit Decreasing” – FFD, “Best-Fit Decreasing” – BFD)
and not far away from an exhaustive search when this
is possible. The first step of BBFd is to sort all sig-
nals in decreasing order of bandwidth consumption on
each station. Then, starting from the beginning of the
sorted array of signals, each signal is inserted in the
frame that minimizes the bandwidth usage and ensures
feasibility. However this strategy is not always effec-
tive. Bin-packing is started from the beginning of the
array, maintaining a set of frames that are not fully
packed at each step. Now as one progresses towards
the end of the array, signals with lower frequencies tend
to be encountered since signals are sorted according to
their bandwidth usage. These signals may be packed
into an incompletely packed frame with high frequency
signals. This will result in a waste of bandwidth be-
cause the frame has a high frequency itself and there
is an increase in its size. In our experiments with uni-
directional heuristics such as BBFd but also FFD and
BFD, we observed a large number of such anomalies.

The underlying idea of the “Bi-directional Frequency
Fit” (BDFF) heuristic is that the signals with the same
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frequencies should be grouped together as this re-
duces the bandwidth consumption. At each station the
heuristic sorts the signals in decreasing order of their
frequency. It creates an empty frame, adds it to a
front set, and starts packing signals into it from the
beginning of the array until a new frame is needed to be
created. At this point, it switches to the end of the array,
creates a new frame, adds it to a back set and starts
packing signals till a new frame needs to created and so
on. Only frames from the front set are used to pack
signals from the beginning and only frames from the
back set for packing signals from the end of the array.
This continues till all signals are packed. In this way,
by maintaining two sets of frames, the heuristic tries to
ensure that lower frequency signals are not packed in
higher frequency frames. The feasibility of the set of
frames thus composed is tested by the Audsley algo-
rithm as explained in Subsection 2.2.

3.2. Algorithmic description

In the following, F is the set of all frames, F i
front,

F i
back respectively denotes the front set and back set

at station i while Sj is the bi-directional list of signals
at station j sorted in decreasing order of frequency.
The algorithm of the “Bi-directional Frequency Fit
(BDFF)” heuristic is given below:

1. Construct F = {}
2. At each station j do the following:

2.a Sort the signals in decreasing order of fre-
quency in a bi-directional list Sj .

2.b Construct F j
front = F j

back = {}. Set
Front = true.

2.c If Sj is empty do F = F j
front ∪ F j

back ∪ F
and proceed to the next station and goto step
2, and if all the stations are done goto step 3.

2.d If Front = true goto 2.d.1 else goto 2.d.4.

2.d.1 Remove a signal si from the front of
the list Sj and construct a new frame
fnew and insert si in it and add fnew

to F j
front.

2.d.2 If Sj is empty goto step 2.c.
2.d.3 Look at the signal s at the front of the

list Sj . Find the frame f in F j
front

which minimizes the bandwidth uti-
lization with a positive deadline (see
Appendix A) and which does not ex-
ceed the maximum data size if s is in-
serted in it. Compare this bandwidth

to the one obtained by inserting s in
a new frame. If there is no frame f
in F j

front which can accommodate s
or if the bandwidth is minimized by
inserting s in a new frame then set
Front = false and goto step 2.c;
else remove the signal s from the front
of the list Sj and add it to the frame
f and update the characteristics of f
and goto step 2.d.2.

2.d.4 Remove a signal si from the back of
the list Sj and construct a new frame
fnew and insert si in it and add fnew

to F j
back.

2.d.5 If Sj is empty goto step 2.c.
2.d.6 Look at the signal s at the back of the

list Sj . Find the frame f in F j
back

which minimizes the bandwidth uti-
lization with a positive deadline (see
Appendix A) and which does not ex-
ceed the maximum data size if the s
is inserted in it. Compare this band-
width to the one obtained by inserting
s in a new frame. If there is no frame
f in F j

back which can accommodate s
or if the bandwidth is minimized by
inserting s in a new frame then set
Front = true and goto step 2.c; else
remove the signal s from the back of
the list Sjand add it to the frame f
and update the characteristics of f and
goto step 2.d.5.

3. Feasibility test of the set of frames with the Aud-
sley algorithm:

3.a If the set F is feasible return SUCCESS oth-
erwise go to step 3.b

3.b Construct the set of frames F
′ ⊆ F , for

which no priority has been found.

3.b.1 If all the frames in F
′
contain one sig-

nal each return FAILURE else goto
step 3.b.2

3.b.2 Find the frame in F
′
containing at least

2 signals and which has the least dif-
ference between the worst case re-
sponse time and the deadline at the
lowest priority which has not been as-
signed. Let the frame be f

′
.

3.b.3 Remove the s
′
signal from f

′
with the

smallest deadline, and make a new
frame f

′′
containing only s

′
. Update
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the characteristics of f
′
and add f

′′
to

the set F . Goto step 3.a.

This heuristic is composed of two distinct parts. The
first parts (step 1 and 2) aims at constructing a solution
that minimizes the bandwidth consumption. The sec-
ond part (step 3) deals with the feasibility of the pro-
posed solution that is tested with the Audsley algorithm
(see paragraph 2.2). Should the Audsley test fail, then
the heuristic tries to reduce the deadline constraints of
the frames by isolating the most demanding signals.
The frame initially chosen for the decomposition is the
one that exceeds the least its deadline at the lowest pri-
ority level that has not been successfully assigned. It
is thus the frame that is the more “likely” to respect its
deadline if it should contain less data. To determine
which frame to decompose, it is necessary to compute
a response time for each frame for which a priority has
not been found: one gives the considered frame the first
priority not assigned by the Audsley algorithm. The
higher priority frames stay unchanged and the lower
priority frames have no influence at all. This decom-
position scheme is the one presented in [7], which will
enable a fair comparison between BDFF and BBFd. In
Section 4, we propose a new strategy that outperforms
this one.

At each station j, the construction of the set F j
front∪

F j
back takes O(n2

j ) time where nj is the number of
signals on that station. The decomposition can take, in
the worst case, O(ntotal) decompositions and for each
decomposition O(n2

total) response time calculations,
where ntotal is the total number of signals in all the
stations. In our experiments made on industrial-scale
problems (hundreds of signals), this complexity did not
raise time problem since the average computation time
of a solution with the largest network load considered
(see §3.3) was less than one second on an Intel 1.7 Ghz
processor.

3.3. Performance evaluation

The BDFF heuristic is compared to the existing
BBFd heuristic with regard to the bandwidth consump-
tion of the resulting set of frames. The heuristics were
implemented in C++ and the feasibility of the solu-
tions was tested using the rts software [8] that im-
plements the Audsley Algorithm as well as the worst-
case response time computation on CAN. Only the re-
sults induced by configurations that are feasible with
both strategies are taken into account since the use of
non-feasible set of frames is ruled out in the context

of in-vehicle applications. The experiments are per-
formed on randomly generated sets of messages where
the parameters, chosen so as to be realistic with typical
in-vehicles applications (see [9,16]), are the following:

1. the bandwidth of the CAN network is fixed at 500
kilobits/sec,

2. the size of a signal is given by a random variable
uniformly distributed from 1 to 24 bits,

3. the signal period is given by a random variable
uniformly distributed from 5 to 100 msec in steps
of 5 msec,

4. the signal deadline is fixed equal to the signal
period,

5. the maximum frame data size is 64 bits as defined
by the CAN protocol [5],

6. the overhead per frame is 64 bits,
7. the number of stations is 1, 2, 5, 7, 10, 12 or 15,
8. the nominal load (i.e. is the load brought by the

data alone) for the whole set of stations is either
10%, 15% or 20%.

Figure 2 shows the total network load for 150 con-
figurations returning feasible solutions for both of the
algorithms. In each pair of curves, one represents the
load with BBFd and the other the load with BDFF at a
particular nominal load. On the x axis, the number of
stations varies.

The results of the experiments show that the BDFF
heuristic outperforms the BBFd heuristic in terms of
minimizing the bandwidth consumption whatever the
nominal load and the number of stations. The gain
reaches up to 21% (one station – 20% of nominal load)
and it is especially important when the number of sta-
tions is smaller. As the number of stations increases
the better performance of the BDFF heuristic becomes
less evident.

A closer analysis of the data reveals that for BDFF
the set of frames built after step 2 of the heuristic is
more likely to need decomposition as the number of
stations increases. It was also observed that in the sub-
sequent decomposition procedure, in general, a large
number of new frames were created and the bandwidth
consumption of the resulting feasible configuration was
significantly higher than the bandwidth obtained with
the BBFd heuristic. This is due to the fact that the
decomposition strategy does not always succeed in in-
creasing the deadline of the decomposed frames effec-
tively. This led us to propose a new decomposition
scheme.
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Fig. 2. Total network load for BDFF and BBFd with a number of
stations varying from 1 to 15 and a nominal load of 10, 15 and 20%.

4. Deadline relaxing decomposition scheme

The decomposition scheme used up to now for eval-
uating BDFF against BBFd was proposed in [7]. First,
this algorithm identifies the frame that exceeds its dead-
line by the smallest amount of time when scheduled
at the lowest priority level that has not been success-
fully assigned. Then, the signal contained in that frame
with the smallest deadline is isolated in a newly cre-
ated frame, increasing thus the deadline of the original
frame.

However, this scheme often fails to substantially re-
lax the original deadline because the deadline of a frame
depends not only on the deadlines of the individual
signals but also on their periods (see Appendix A). In
addition, this scheme creates frames with just one sig-
nal and, thus, results in inefficient packing due to the
protocol overhead. Moreover, in the common situation
in which deadline is equal to period, these one-signal
frames have a high frequency, thus greatly increasing
bandwidth consumption. The goal of this section is to

propose a decomposition scheme which is more effec-
tive in increasing the deadlines of the resulting frames
while not significantly increasing the bandwidth con-
sumption.

4.1. Algorithmic description

The idea of the algorithm is to choose the signals
to remove from the original frame in such a manner
that the deadline of the frame without these signals
is maximum. Another frame is formed into which
the chosen signals are added in such a way that the
deadline of the new frame is always greater than or
equal to the deadline of the original frame. If this
strategy is successful, one ends up with two frames
having deadlines no lesser than the original one and
being thus more likely to be schedulable. The algorithm
replaces the step 3.b.3 of the BDFF scheme described
in paragraph 3.2:

3.b.3 The frame f
′

is to be split and F is the set of
frames. Set initial deadline to the deadline
of f

′
. Create f1 = f

′
and an empty frame f2.

Set continue = true.

3.b.3.a If f1 contains only one signal then goto
step 3.b.3.f

3.b.3.b Choose s from f1 such that
s=argmaxsi∈f1

(deadline(f1−{si})
where deadline(f) returns the dead-
line of frame f given the signals com-
posing f .

3.b.3.c If deadline(f2 + {s}) < initial
deadline then goto step 3.b.3.f

3.b.3.d If deadline(f1 − {s}) > initial
deadline set continue = false.

3.b.3.e Set f1 = f1−{s} and f2 = f2 + {s}.
If continue = true goto step 3.b.3.a

3.b.3.f Remove f
′

from F . Add f1 and f2 to
F .

4.2. Performance evaluation

The performance evaluation of the deadline relax-
ing decomposition scheme was performed considering
configurations generated by both the BBFd heuristic
and the BDFF heuristic. Only the frame sets which
required decomposition due to unfeasibility were con-
sidered. The parameters of the evaluation were the
same as for the experiment of paragraph 3.3 except that
the number of stations was fixed at 10 and only high
nominal loads were considered. The performance of
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Table 1
Efficiency of the new decomposition scheme (D2) against the existing one (D1) on message sets generated with BBFd

Nominal load Number of successes Number of successes Av. bandwidth usage Av. bandwidth usage
with D1 with D2 with D1 (%) with D2 (%)

20% 96 100 71.8 70.4
22.5% 61 89 78.2 76.9
25% 16 52 84.4 82.3

Table 2
Efficiency of the new decomposition scheme (D2) against the existing one (D1) on message sets generated with BDFF

Nominal load Number of successes Number of successes Av. bandwidth usage Av. bandwidth usage
with D1 with D2 with D1 (%) with D2 (%)

20% 100 100 70.6 67.6
22.5% 68 95 77.7 73.8
25% 13 37 83.6 79.2

the deadline relaxing decomposition scheme was as-
sessed against the previous decomposition scheme. At
each load level, both algorithms were executed on 100
configurations requiring decomposition.

Tables 1 and 2 show the performance in terms
of bandwidth and feasibility of the deadline relaxing
decomposition scheme (denoted D2) against the old
scheme (D1) on unfeasible frame sets created by BBFd
and BDFF. For the bandwidth consumption only those
configurations were considered which resulted in suc-
cess for both the decomposition schemes. Whatever
the load and the decomposition algorithm, D2 clearly
outperforms D1 in terms of bandwidth.

Regarding feasibility,D2 also proves to behave much
better than D1. For instance at 25% nominal, there are
approximatively 3 times more feasible configurations
with D2 than with D1. An important observation is that
on our experiments it never happens that a configuration
became feasible with D1 and not with D2.

From Tables 1 and 2, one sees that the overall ef-
ficiency of BDFF plus D2 in terms of bandwidth and
feasibility is clearly better than the one from BDFd plus
D1 which was the solution proposed in [7]. However,
with a same decomposition scheme, BBFd tends to be
better than BDFF in terms of feasibility which means
that BBFd must not be ruled out especially on highly
loaded systems.

5. Conclusion

In this study, algorithms for solving the problem of
building feasible sets of frames that minimize the band-
width consumption have been proposed. The proposals
have proved to be more effective than existing solutions
published in [7] both in terms of bandwidth consump-
tion and capability of finding feasible sets of messages.

The BDFF heuristic can be used as a starting point
for other optimization algorithms to direct the search
towards promising parts of the solution’s space. In par-
ticular they might be included in the initial population
of a genetic algorithm, the initial population having in
general a strong impact on the performance of the al-
gorithm (see for instance [18]). One can additionally
try to improve the solution given by BDFF in terms
of bandwidth usage with a local optimization proce-
dure as it is classically done in optimization (see for
instance [12]). A simple scheme that tries to permutes
pairs of signals has been proposed in [7]: it brought
small improvements (about 0.5% in bandwidth) and
better heuristics remain to be found.

In this study, frames are formed by statically bind-
ing each signal to a frame. The frames are then peri-
odically transmitted even if some signals having lower
frequencies than the frame have not been generated.
This leads to a waste of bandwidth but on the other
hand the memory needed to store the characteristics of
the frames is minimum. Another possibility to solve
the frame packing problem is to build a set of frames
such that each frame only contains signals that have
been produced at the transmission time of the frame.
However, it has to be pointed out that this scheme is
restricted to specific applications, in particular having
a small LCM of the signal periods, since the number
of frames becomes in general too important for being
stored especially in the context of automotive systems.
Experiments conducted with a simple First Fit scheme
(a frame is made of a number of signals whose pro-
duction dates occurs consecutively) suggest to us that
the gain in bandwidth consumption is very important
(up to 30% over BDFF – only feasible set of frames
were considered). A future work consists in conceiv-
ing algorithms for this problem with a reasonable algo-
rithmic complexity and that perform well in terms of
bandwidth and feasibility.
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Appendix A. Deadline of a frame after the addition
of a signal

The transmission period of a frame containing sev-
eral signals is the smallest production period of the
signals and the transmission of the frame will be syn-
chronized with the production of the signal having the
smallest period. On the other hand, the deadline of
the frame is not the smallest deadline due to possible
offsets between the production dates of the signals and
the actual transmission dates of the frame. Let us con-
sider the example shown on Fig. 3 with two signals
s1 and s2 having respectively a period T1 = 10 and
T2 = 14, and a deadline (relatively to the production
date) D1 = 10 and D2 = 14. The signal s2 produced
at time 14 is actually sent at time 20 and the deadline
of the frame must thus be equal to 8 in order to respect
the timing constraint of s2. One can also note that the
transmissions made at times 10 and 40 do not include
any new value for s2. In practice, the value of s2 might
be re-transmitted or not but there will not be any timing
constraint on the frame induced by signal s2.

To determine the deadline of the frame, one must
find the largest offset between a production date and
the transmission of the next frame. One wants to in-
clude signal si in frame fk already containing the sig-
nals sk

1 , s
k
2 , . . . sk

n. One denotes smin the signal with
the smallest period of the set {sk

1 , s
k
2 , . . . sk

n} ∪ si, the
period of fk becomes T ∗

k = Tmin. The relative dead-
line of fk is D∗

k = min{Dj − Offset(Tmin, Tj) | sj ∈
{sk

1 , s
k
2 , . . . sk

n} ∪ si} where Offset(a, b) returns the
largest possible duration between the production date
of a signal with period b � a and the transmis-
sion of the frame of period a that contains the sig-
nal. It has been shown in [14] that ∀k1, k2 ∈ N

k1 · a − k2 · b = q · gcd(a, b) with q ∈ Z. In our
context, one imposes a > k1 · a − k2 · b � 0 and thus
Offset(a, b) = ( a

gcd(a,b)−1)·gcd(a, b) = a−gcd(a, b).
In our example, the deadline must be set to 6.
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Fig. 3. Two signals with production periods equal to 10 and 14.
The signals are transmitted in a frame synchronized with the signal
having the smallest period. The dotted line indicates when the signal
with period 14 is actually transmitted.

Appendix B. Audsley Algorithm for
Non-Preemptive fixed-Priority Scheduling

In this section, we give a proof that the Audsley al-
gorithm is optimal, in the sense that if a feasible pri-
ority allocation exists then it will necessarily be found
by the algorithm, for Non-Preemptive Fixed-Priority
(NPFP) scheduling if the blocking factor is the same
for all frames of the message set. In our case, we as-
sume the existence of at least one non real-time frame
whose size if greater than or equal to the biggest frame
of the real-time message set. In the automotive context,
such frames usually exist for instance for exchanging
diagnosis data among ECU’s.

For a given set of frames F of cardinality m there
exists a set of feasible priority allocation denoted by
A. One denotes γ(k) the index of the task having the
priority level k under a given priority allocation. The
notation [γ(m), . . . , γ(k)] indicates a partial priority
allocation where only the priority levels from m to k
have been fixed. One calls property 1 the fact that
under NPFP, the worst-case response time of a task at
level k only depends on the workload induced by tasks
from priority 1 to k and on the blocking factor (see, for
instance [17]). Property 2 is the existence of a single
blocking factor for the whole task set.

The Audsley Algorithm (AA) searches for each
priority level a task that is feasible at this priority.

It starts from the lowest priority level m and runs down
to the highest level which is 1. The proof is made by
induction on the priority levels. The induction hypoth-
esis being that, up to step k, the Audsley algorithm has
found a partial priority allocation such that there neces-
sarily exists at least one allocation in A which contains
the partial allocation obtained by the algorithm up to
step k. We assume A �= ∅.

For priority level m, AA returns γ(m) such that
frame fγ(m) is feasible at level m (there exists at least
a frame feasible at level m thus AA by trying the possi-
bilities one by one will find one). Assume that none of
the allocation in A has chosen γ(m) for level m. Let
a be one allocation in A, thus γa(m) �= γ(m). Under
a, fγ(m) is thus assigned a priority n < m. One can
exchange the priority of frames fγa(m) and fγa(n) un-
der a while keeping feasibility since fγa(n) (=fγ(m)) is
feasible at level m and the total workload at priority n
is lower than or equal to the workload at level m and
because of property 1 and 2. Thus, there necessarily
exists at least one feasible allocation with the choice
made by the Audsley algorithm for level m.

Priorities for levels m to k have been chosen with
AA and one obtains the partial priority allocation
[γ(m), . . . , γ(k)] with [γ(m), . . . , γ(k)] belonging to
at least one feasible solution (induction hypothesis).
For level k−1, AA returns the frame with index γ(k−1)
which is feasible at this priority level. As for the case
of priority m, since there exists at least a frame feasible
at level k − 1, AA by trying the possibilities one by
one will find one. Assume that none of the allocation
in A has chosen γ(k − 1) for level k − 1. Let a be
an allocation in A that contains [γ(m), . . . , γ(k)] with
γa(k − 1) �= γ(k − 1). Using the same argument as
for level m, one shows that a will also be feasible with
γa(k − 1) = γ(k − 1). Thus, AA always returns an
allocation belonging to A.


