
Verified Incremental Development of
Lock-Free Algorithms

David Déharbe∗, Loı̈c Fejoz†, Pascal Fontaine‡, Stephan Merz†
∗Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

†LORIA–INRIA, Nancy, France
‡LORIA–Nancy University, Nancy, France

david@dimap.ufrn.br, {Loic.Fejoz,Pascal.Fontaine,Stephan.Merz}@loria.fr

Abstract—Mutual exclusion locks have traditionally been
used for synchronizing the access of multiple processes to
shared data structures. Multi-processor architectures offer
new synchronization primitives that have given rise to algo-
rithms for optimistic concurrency and non-blocking imple-
mentations. These algorithms are quite subtle and raise the
need for formal verification. We propose a refinement-based
method for designing and verifying non-blocking, and in
particular lock-free, algorithms. We achieve good success
in automatically discharging the verification conditions
generated by this method, relying on first-order and SMT
provers, augmented by a simple but useful instantiation
heuristic. We present our method using a non-trivial
running example due to Harris et al.

I. OVERVIEW

When multiple processes access a shared data struc-
ture, some form of discipline is necessary to prevent
conflicting accesses and potential inconsistencies. Tra-
ditionally, mutual exclusion via locking has been the
main inter-process synchronisation abstraction. Although
conceptually simple, this technique has a number of
problems. Indeed, coarse-grained locking, by which a
process gains exclusive access to the entire data struc-
ture, is unnecessary when processes wish to access
different parts of the data and thus degrades overall
performance. Fine-grained locking, on the other hand,
is prone to deadlocks and priority inversions, giving
rise to errors that are difficult to reproduce and hard to
debug. Globally speaking, lock-based implementations
are examples of a pessimistic approach to concurrency
where the designer guards in advance against possible
errors.

In contrast, optimistic concurrency control allows
processes to execute as if they were working in iso-
lation. When concurrent access is detected, process
react appropriately in order to ensure overall correct-
ness. This approach has been proposed since at least
the early 1990s [8], [9]; it has received new attention

The work of the second author was supported by Microsoft Research
through its European PhD Scholarship Programme.

with the advent of highly concurrent processor and
system architectures. The corresponding algorithms rely
on atomic processor instructions such as Compare-And-
Swap (CAS), Load-Link/Store-Conditional (LL/SC) or
Test-And-Set (TAS). It has been shown [16] that their use
can make algorithms scale better. Lock-free algorithms
avoid deadlocks by construction, but still place the
burden of establishing overall correctness to shared data
structures on the programmer. Software Transactional
Memory (STM [20]) is a higher-level abstraction that
does not explicitly require locks. It provides a simple
interface to the application programmer who can pretend
to write sequential code. Implementations of STM make
use of non-blocking algorithms.

Because of their importance and intricacy, we believe
that non-blocking algorithms are a prime target for
techniques of verification and formal methods of system
development. Traditionally, algorithm designers provide
informal correctness arguments, and it is easy to over-
look corner cases. Because arbitrarily many instances
of the algorithms are expected to cooperate properly,
standard finite-state model checking cannot by itself
ensure overall correctness. Harris et al. [7] propose a
clever abstraction technique, but still do not verify full
correctness of their algorithms.

Linearizability [9] is the most widely accepted cor-
rectness property that non-blocking algorithms should
satisfy. It requires that the externally observable behav-
ior of the implementation corresponds to the outcome
produced by some interleaving of atomically executed
operations. From the user’s point of view, the imple-
mentation can therefore be understood in terms of a se-
quential specification where each operation is described
in isolation. Linearizability ensures that all invariants
guaranteed by the atomic specification are preserved
by the implementation. Formally, proving linearizability
amounts to proving a refinement relationship between the
non-atomic implementation and the atomic specification.
Proposed techniques for verifying linearizability include

word t RDCSS(RDCSSDescriptor t *d) {
word t r;
do {

r = CAS1(d−>a2, d−>o2, d);
if (IsDescriptor(r)) Complete(r);

} while (IsDescriptor(r));
if (r == d−>o2) Complete(d);
return r;

}

word t RDCSSRead(word t *addr) {
word t r;
do {

r = *addr;
if (IsDescriptor(r)) Complete(r);

} while (IsDescriptor(r));
return r;

}

void Complete(RDCSSDescriptor t *d) {
word t v = *(d−>a1);
if (v == d−>o1) {

CAS1(d−>a2,d,d−>n2);
} else {

CAS1(d−>a2,d,d−>o2);
}

}

Fig. 1. Implementation of the RDCSS operation.

types for atomicity [6] and reduction rules in the sense
of Lipton [14]. Unfortunately, we have not been able
to apply them for advanced algorithms such as those
based on descriptors (see Sect. II), because the primitive
operations do not commute. Methods based on separa-
tion logic such as [18] appear more promising, but their
application currently appears to be limited to relatively
simple data structures such as lists. Moreover, they
currently lack support by powerful automatic provers.
In principle, one could apply general-purpose formal
methods such as assumption-commitment reasoning [10]
or methods based on refinement such as B [1] or
TLA+ [13]. However, initial experience indicated to us
that their use quickly leads to messy encodings and
complicated proof obligations that can be difficult to
understand and to prove. This motivated us to develop
a custom framework for proving the correctness of such
algorithms, optimized for typical techniques that appear
in non-blocking algorithms and for support by automatic
proof tools. In particular, we have extended our SMT
solver by a simple instantiation heuristic that gives good
coverage for the case studies that we have considered.

This paper is organized as follows: Sect. II gives a
short overview of non-blocking algorithms and intro-
duces the running example used in the remainder of the
paper. Section III describes our method for modeling
lock-free algorithms and explains the associated verifica-
tion conditions for proving linearizability. Section IV de-
scribes our experiences with applying automatic provers
and presents the instantiation heuristic that we have
implemented for our SMT solver. Section V concludes
the paper.

II. NON-BLOCKING ALGORITHMS

Non-blocking algorithms mediate the (uniform) access
of several processes to data structures held in shared
memory. We assume here a sequentially consistent mem-
ory model [12]. In principle, non-blocking algorithms
could be based on atomic read and write instructions,
but this would be quite complex and inefficient. Modern
processors provide instructions that provide somewhat
more complex atomic memory operations. In particular,

single-word CAS (CAS1) is available on many processor
architectures and has been shown to be universal [8] in
the sense that it can be used to implement similar atomic
operations, including multi-word CAS [7]. The effect of
CAS1 is to atomically execute the following code:

word t CAS1(word t *a, word t o, word t n) {
word t r = *a;
if (r == o) { *a = n; }
return r;

}

In particular, notice that CAS1 never blocks and
always terminates. Therefore, CAS1 and similar prim-
itive operations avoid deadlocks and priority inversion
problems, although they can cause contention. Harris et
al. [7] propose an implementation of multi-word CAS
based on the following intermediate operation RDCSS:

word t RDCSS(word t *a1, word t o1,
word t *a2, word t o2, word t n2) {

word t r =*a2;
if ((r == o2) && (*a1 == o1)) { *a2 = n2; }
return r;

}

RDCSS atomically updates the content of variable a2
if the values of a2 and of another variable a1 match
specified values o2 and o1. RDCSS is not available as
a primitive operation, and [7] proposes an implementa-
tion based on CAS1 that appears in Fig. 1. Instead of
passing multiple arguments, the implementation uses a
single argument, a descriptor, that contains a field for
every argument of the original operation. It is assumed
that memory locations can store descriptors as well as
ordinary values, and that descriptors can be distinguished
from ordinary values. Processes use fresh descriptors
for every invocation of the RDCSS operation. Most
importantly, the implementation requires that memory
locations that may be updated through the RDCSS op-
eration be only read through the auxiliary RDCSSRead
operation. Observe that RDCSSRead always returns an
ordinary value and never a descriptor.

The RDCSS implementation begins by installing the
descriptor at location a2 using CAS1. If this succeeds,
the variable indeed contained the expected value o2, and

the RDCSS operation is completed by reading the value
of a1 and exchanging the descriptor against either n2
or o2, depending on whether a1 contained the expected
value o1 or not. If another process concurrently accesses
a2, the initial CAS1 operation returns a descriptor. In this
case, the implementation could simply back off, waiting
for the first operation to complete. As an optimization,
it instead completes the operation on behalf of the
competing process; this is possible because the descriptor
contains all the necessary information. When the first
process later tries to complete its operation, it will no
longer find its descriptor, and the final CAS1 operation
has no effect. Harris et al. [7] go on to similarly imple-
ment the CASn instruction using the RDCSS operation.

Our objective is to provide a method and tool support
for proving the correctness of implementations such
as RDCSS with respect to linearizability. That is, any
multi-threaded execution of these operations appears
as a possible execution of the same code where calls
to RDCSS are replaced by atomic executions of the
original RDCSS instruction, and calls to RDCSSRead
are replaced by atomic reads of the variable.

III. MODELING AND REFINING LOCK-FREE
ALGORITHMS

We first describe our proposal for specifying (sys-
tems of) non-blocking algorithms and then introduce
verification conditions for proving that a lower-level
specification correctly refines a higher-level description
of the same algorithms. Our method has been for-
malized and verified in the interactive proof assistant
Isabelle/HOL [17].

A. Algorithm Specifications

Our method is intended for the simultaneous develop-
ment of a finite fixed set Alg1, . . . ,Algm of algorithms.
These access a (sequentially consistent) shared memory,
represented by a set GV of global variables. They also
access local variables LVi ; we write PVi = GV ∪ LVi

for the variable signature of algorithm Alg i. An algo-
rithm specification (over set of variables PV) is given as
an extended finite transition system: a finite-state control
flow graph whose edges are labeled with transition
predicates. These are formulas containing variables v
and v′, for v ∈ PV, that constrain the variable update
during a transition (with the usual convention that v
denotes the value before and v′, the value after the
transition). For example, the representation of the atomic
RDCSS operation appears at the top of Fig. 2. Nodes
q are labeled with two predicates: the state predicate
I(q) represents an invariant that should hold whenever
the algorithm is at place q; it does not contain primed

variables. The transition predicate R(q), whose use
is inspired by assume-guarantee methods of program
verification, constrains the allowed transitions of other
processes that coexist in the same system.1 In order to
be well-formed, an algorithm specification must satisfy
the conditions

I(q) ∧ δ(q, q′) ⇒ I ′(q′)
I(q) ∧R(q) ⇒ I ′(q) (1)

for all places q, q′ (where δ(q, q′) denotes the transition
predicate associated with the transition from q to q′

and I ′(q′) denotes the invariant associated with place q′

where all variables have been replaced by their primed
copies): algorithm transitions must establish the invariant
of the target state, while transitions of other processes
should preserve it.

A system specification is just a set of algorithm specifi-
cations. It is well-formed if every algorithm specification
is well-formed and, moreover, all (applicable) transitions
of each algorithm Alg i respect the rely predicates of all
algorithms of the specification—including those of Alg i

itself, because several instances of the same algorithm
may be executed in parallel by different processes. More
formally, for any two algorithm specifications Alg i and
Algj over variables PVi and PVj such that PVi∩PVj =
GV ,2 we must have

Ii(qi) ∧ Ii(qj) ∧ δi(qi, q′i) ∧ LVj
′ = LVj

⇒ Rj(qj)
(2)

for all places qi, q′i of Alg i and qj of Algj .
At run-time, we model a system as consisting

of an at most denumerable number of processes
Proc1,Proc2, . . ., where process Proci is assumed to
execute algorithm Algα(i), over a private copy of the
local variables defined by that algorithm. The state of a
system is thus given by a global environment genv that
assigns values to the variables in GV and a local state
(qi, lenv i) for each process Proci such that qi is a place
of the algorithm specification Algα(i) and lenv i assigns
values to a private copy of the variables LVα(i). We write
penv i for the joint valuation (genv , lenv i). A system run
is an ω-sequence σ = s0s1 . . . of system states such that
the places of all processes at s0 are the initial places of
the corresponding algorithms, the process environments
penv0

i at s0 satisfy the invariants associated with these
places, and every transition (sk, sk+1) corresponds to
the transition of some process Proci according to δα(i),
leaving all other local states unchanged, or to a stuttering

1These predicates are all trivial (TRUE) for the atomic RDCSS
example.

2In particular, for i = j, we rename the local variables of one copy
of the algorithm.

idem

THEN CAS1(a2, d, n2)
ELSE CAS1(a2, d, o2)

∧aa
2 = ac

2

∧aa
1 = aa

1

THEN n2

ELSE a2

aa
2 6= dcaa

2 = dc

∧¬desc(a2)

∧CAS1(a2, o2, d
′)

∧d′ = newDesc(o1, o2, n2, pid)

p5p4p3

p6 p7 p8

p2p1

a′2 = IF a2 = o2 ∧ a1 = o1

rc = o2 rc 6= o2

complete(d)

idem

idem

r 6= o2

p9 p11 p12p10 p13

ELSE aa
2 = ac

2

THEN aa
2 = getO2 (ac

2)
IF desc(ac

2)

IF a1 = o1 ∧ r = o2

THEN CAS1(a2, d, n2)
ELSE CAS1(a2, d, o2)

ac
2 6= dc

r = o2

∧r′ = x

ac
2 6= dc

complete(v) , IF a1 = getO1(v) THEN CAS1(a2, v, getN2 (v)) ELSE CAS1(a2, v, getN2 (v))

I(p2) = I(p5) = I(p8) = I(p13) , a2 6= d

I(p4) , ((a2 = d ∧ r = o2) ∨ (a2 6= d ∧ r 6= o2))

R(p2) = R(p5) = R(p8) = R(p13) , a′2 6= d

R(p4) , IF a2 = d THEN a′2 = a2 ELSE a′2 6= d

R(p7) = R(p11) , a′2 = a2 ∨ (a2 = d ∧ complete(a2))

I(p7) = I(p11) , a2 = d⇒ r = o2

I(p10) = I(p6) = I(p6b) , desc(a2)⇒ getPid(a2) 6= pid

CAS1(a1, o1, n1) , IF a1 = o1 THEN a′1 = n1 ELSE a′1 = a1

p6b

∧desc(a2)

∧r′ = a2

complete(r)

∧aa
1 = ac

1

∧aa
2 = ac

2

∧ra = rc

∧pca 6= p3 ⇒ ra = rc

idem

IF a1 = o1

Fig. 2. Stepwise development of the RDCSS implementation.

step, i.e. sk+1 = sk. Stuttering steps are allowed in
executions because lower-level refinements will typically
add steps that map to stuttering at the abstract level of
description.

The well-formedness conditions (1) and (2) ensure that
all local invariants hold throughout any system run: for
any system state sk, every local state penvk

i satisfies the
invariant Iα(i)(qk

i) associated to the current place of the
algorithm.

B. System Refinement

During system development, we wish to replace a
high-level system specification by a more detailed one.
We thus have to compare system specifications Speca =
{Alga

1 , . . . ,Alga
m} and Specc = {Algc

1, . . . ,Algc
m} at

“abstract” and “concrete” levels of description. Whereas
the set of algorithms is fixed, their specifications change,
and we assume w.l.o.g. that these specifications are writ-
ten in terms of distinct sets of variables. We expect the

Assume given two specifications Specc = {Algc
1, . . . ,Algc

m} and Speca = {Alga
1 , . . . ,Alga

m}, refinement relations
Ref = (Ref1 , . . . ,Refm), and gluing invariants G = (G1, . . . , Gm). We say that Specc refines Speca modulo Ref
and G if all of the following conditions hold:

• For every concrete initial state there exists an abstract initial state satisfying the gluing invariants:(m∧
i=1

Ic
i (qc

0,i)
)
⇒ ∃GV a,LVa

1 , . . . ,LV
a
m :

m∧
i=1

Gi(qc
0,i, q

a
0,i) ∧ Ia

i (qa
0,i)

• Every concrete-level step corresponds to the abstract step of some algorithm, or to stuttering: for all i, k =
1, . . . ,m and all places (qc

k, q
a
k) ∈ Refk the following implication is valid:

δc
i (q

c
i , q

c
i
′) ∧

∧
k 6=i

qc
k
′ = qc

k ∧ LVc
k
′ = LVc

k

∧
m∧

k=1

Gk(qc
k, q

a
k) ∧ Ic

k(qc
k) ∧ Ia

k (qa
k)

⇒ ∃GV a′,LVa
1
′, . . . ,LVa

m
′ :

GV a′ = GV a ∧
m∧

k=1

LVa
k
′ = LVa

k ∧G′
k(qc

k
′, qa

k)

∨
m∨

j=1

∨
{qa

j
′:(qc

j
′,qa

j
′)∈Refj}

δa
j (qa

j , q
a
j
′) ∧ G′

j(q
c
j
′, qa

j
′)

∧
∧
k 6=j

LVa
k
′ = LVa

k ∧G′
k(qc

k
′, qa

k)

Fig. 3. Proof obligations for refinement.

developer, besides writing the algorithm specifications,
to link them by defining a gluing invariant relating the
state representations at the two levels of description.
Formally, the gluing invariant is expressed as a state
formula Gi(qc, qa) over the variables PVi

c ∪ PVi
a,

associated with the places of the concrete and abstract
specifications.

Fig. 2 shows three levels of refinement for the RDCSS
algorithm. The most detailed specification corresponds
to the structure of the code shown in Sect. I. The
gluing invariants for states linked by dotted arrows are
shown in the right-hand column of the diagram, to be
completed by the formulas that appear alongside the
dotted arrows. For places not linked by dotted arrows,
the gluing invariant is FALSE. To make the figure more
readable, some annotations are omitted: the invariants
and rely predicates assert that a1, o1, o2, and n2 are not
descriptors, that d is a descriptor whose fields have the
expected values and that are not descriptors themselves.
As for the transition annotations, all variables that do
not appear primed are implicitly left unchanged by the
transition.

In order to justify that a (well-formed) specification
refines another one, two verification conditions have to
be proved:

1) for every concrete initial state satisfying the invari-

ant there exists an abstract initial state that satisfies
the abstract invariant and the gluing invariant, and

2) every concrete-level step corresponds to the ab-
stract step of some algorithm, or to stuttering.

Although the basic idea of these conditions is common
to formalisms based on refinement [1], [2], [11], [15], the
precise formulation of the second condition should allow
a concrete algorithm Algc

i to perform an abstract-level
transition on behalf of some other abstract algorithm
Alga

j , or a different instance of the same algorithm.
In our running example, such a “non-local” refinement
appears, among others, at place p7 when another process
removes the descriptor, implying ac

2 6= d; hence the ab-
stract algorithm moves to place p5 whereas the concrete
one remains at p7. The precise verification conditions
appear in Fig. 3.

Our method has been fully formalized in the interac-
tive proof assistant Isabelle/HOL [17]. In particular, we
have proved that if a concrete specification Specc refines
an abstract specification Speca then for every run of a
system based on Specc there exists a run of the analogous
system based on Speca such that the system and gluing
invariants are verified at every state. In particular, if the
high-level specification is atomic, this implies that the
implementation is linearizable.

01 function eq instantiations(ϕ : formula, p : {+,−})returns set of S
02 if ϕ is v = t and p is + or ϕ is v 6= t and p is −, with v ∈ V , t ∈ T then
03 return {{(v, t)}}
04 if ϕ is ¬ψ then
05 return eq instantiations(ψ, inv(p))
06 if ϕ is ψ ∧ ψ′ then
07 let S = eq instantiations(ψ, p) and S = eq instantiations(ψ′, p) in
08 return {s ∪ s′ | s ∈ S ∧ s′ ∈ S′}
09 if ϕ is ψ ∨ ψ′ then
10 let S = eq instantiations(ψ, p) and S = eq instantiations(ψ′, p) in
11 return S ∪ S′
12 if ϕ is ψ ⇒ ψ′ then
13 let S = eq instantiations(ψ, inv(p)) and S = eq instantiations(ψ′, p) in
14 return S ∪ S′
15 return {}
16 end eq instantiations

Fig. 4. Generating interesting sets of instantiations.

IV. EFFECTIVE TOOL SUPPORT

A. Generating Verification Conditions

We have implemented a verification condition gener-
ator that outputs the proof obligations corresponding to
the well-formed conditions (1) and (2) of Sect. III-A and
the refinement conditions of Sect. III-B in the format
of different automatic and interactive theorem provers.
These proof obligations can be quite large quantified
first-order formulas (a few dozen lines per proof obli-
gation for the RDCSS example), and discharging them
interactively becomes quite tedious. The precise nature
of the proof obligations and the background theory they
should be evaluated in depends on the algorithm at hand.
In the case of RDCSS, they only contain uninterpreted
function symbols, and it is natural to consider the
use of resolution-based theorem provers such as the E
Prover [19] or Spass [22].

SMT (satisfiability modulo theories) solvers [3], [4],
[5] are another breed of automatic deduction tools. They
are able to handle large quantifier-free formulas that
fall into decidable logical theories, combining state-of-
the-art SAT solver techniques to efficiently handle the
Boolean structure of the formula with dedicated decision
procedures for each logical theory. Unfortunately, we
cannot use them directly because our proof obligations
contain (existential) quantification corresponding in par-
ticular to the choice of an abstract successor state. On
manual inspection of the generated formulas, it usually
appears to be quite straightforward to find the required
instantiations. However, when we applied standard SMT
solvers such as CVC3 or Z3 to our running example,

their instantiation heuristics were able to prove fewer
verification conditions than the resolution-based theorem
provers we tried. We now discuss a simple heuristic for
instantiating quantifiers that we have implemented within
our SMT solver VERIT (a successor HARVEY [5]), and
that we have found very useful for discharging the proof
obligations that are generated by the method of Sect. III.

B. An Equality-Driven Instantiation Heuristic

Many quantified formulas generated by the refinement
method of Sect. III-B contain subformulas similar to

∃v1, v2 : (v1 = t1 ∧ v2 = t2) ∨ (v1 = u1 ∧ v2 = u2)
∧ ψ(v1, v2)

for ground terms t1, t2, u1, u2. This syntactic structure
provides a hint that the instances ψ(t1, t2) and ψ(u1, u2)
are relevant for the proof.

In order take into account this hint, the prover needs
• a heuristic to derive such instantiations of quantified

formulas;
• to be able to produce and handle lemmas such

as ϕ(t) ⇒ (∃xϕ(x)) and (∀xϕ(x)) ⇒ ϕ(t).
In the case of an incremental SMT solver, these
lemmas may be produced as requested and added
conjunctively to the original formula, whenever the
SMT solver is unable to prove unsatisfiability from
the already known instances.

Note that our proof obligations typically contain large
quantified formulas3. In order to be able to scale up to

3Quantified subformulas may contain more than 1000 symbols,
excluding separators.

Proved Resigned Timeout
CVC3 116 0 25
Z3 123 18 0
Spass 3.0 95 — 2
E-prover 122 — 19

Fig. 5. Performances of some competing provers on the RDCSS proof obligations.

the size of these formulas, the heuristics should avoid
useless instantiations such as {v1 ← t1, v2 ← t′2} and
{v1 ← t′1, v2 ← t2} in the above example.

Let V denote the set of quantified variables, T the
set of ground terms. A variable instantiation is a pair in
V×T . A set of variable instantiations is a called a multi-
variable instantiation. We denote S = P(V × T) the set
of multi-variable instantiations. Note that this definition
makes it possible that a multi-variable instantiation con-
tain two pairs with the same variable. So, let S ∈ S
be a multi-variable instantiation, S↓ is a multi-variable
instantiation such that:

1) S↓ is a subset of S;
2) S↓ and S have the same domain;
3) S↓ ∈ V →+ T is a partial function from V to T ;

Note that, for a given S, several sets may sat-
isfy the conditions enumerated above. For exam-
ple, {(v1, t1), (v1, t′1)}↓ may be either {(v1, t1)} or
{(v1, t′1)}.

The main function for our heuristic derives a set of
multi-variable instantiations from a given formula; it
appears in Fig. 4 (the second parameter p ∈ {+,−}
records the polarity of the formula). This algorithm
recurses over the structure of the formula and combines
the result obtained from the sub-formulas according to
the current boolean connector. When the connector is
conjunction (lines 06–08), then the result is the set of
unions of the multi-instantiations from each subformulas.
When the connector is disjunction (lines 09–11), the
result is the union of the sets of multi-instantiations.
Negation and implication are handled by adapting the
polarity of the subformulas (lines 04–05 and 12–14). The
first base case (lines 02–03) corresponds to equalities
between quantified variables and ground terms, and the
second base case correspond to formulas that do not
match the previously enumerated patterns. In the former
case, the result is a set with a single multi-instantiation
composed of a single instantiation. In the latter case the
result is the empty set.

The heuristics instantiates a quantified subformula
QV ϕ(V) (where Q ∈ {∀,∃} and V is a list of variables)
by first computing the set of multi-variable instantiations
E(ϕ) = eq instantiations(ϕ,+) and then instantiating

ϕ with S↓, for each S in E(ϕ).

After we enabled this heuristic for VERIT, it was
indeed able to discharge all verification conditions for
the RDCSS example, with a time bound of 5 seconds
per proof obligation. As reported in Fig. 5, we ran
several different automatic provers on the same proof
obligations. The SMT solvers CVC3 and Z34 failed to
prove around 20 formulas each. The E prover yielded a
similar ratio of unproved formulas. Spass failed for 44
formulas due to some resource exhaustion. On other ex-
amples where this problem did not occur, Spass slightly
outperformed the E prover. We used a 5 seconds time
limit, on an Intel R© CoreTM2 CPU at 2.16GHz with 2 Gb
RAM running linux 2.6.24. The same experiments were
conducted with a 30 seconds time limit without signifi-
cant changes: only Spass proved one more formula. One
should however note that our comparison is preliminary
and rather biased. In particular, all provers except VERIT
were run with their default parameters.

V. CONTRIBUTION AND OUTLOOK

We have proposed a refinement-based method for the
deductive verification of lock-free algorithms. Our notion
of refinement reflects linearizability and accomodates
non-atomic implementations modulo data and process
refinement. It has been illustrated over a non-atomic
implementation of the RDCSS operation, which is repre-
sentative of the kind of operations used in modern multi-
and many-core environments.

Our method has been formalized and verified in Is-
abelle/HOL. Besides giving us full confidence in the
correctness of the method, this formalization has helped
us to detect some subtle conditions that could have been
overlooked in a pencil-and-paper proof, and to test some
alternative definitions during the design of the method. A
verification condition generator supports applications of
the method and outputs proof obligations in the formats
of SMT solvers and automatic theorem provers for first-
order logics. We have presented a heuristic for quantifier
reasoning that we have implemented in our SMT solver,

4The executables of those provers are the ones used in the 2008
edition of the SMT-COMP competition for SMT solvers.

enabling us to prove all or almost all proof obligations
automatically for our running example. In general, the
generated formulas do not fall into decidable first-order
theories, so we cannot hope for full automation in all
cases.

We intend to validate the method further by us-
ing it to verify implementations of non-blocking data
structures such as those that appear in [16], [21]. We
are very interested in studying liveness properties of
such algorithms. It will be more challenging to relax
the underlying assumption of a sequentially consistent
memory model. Verifying higher-level abstractions such
as software transactional memory [20] will also be of
great interest.

With respect to the interaction with our SMT solver,
we are working on two improvements. First, proof
attempts frequently fail initially when developing the
models, and it would be helpful to improve the output
of counter-models provided by the automatic deduction
tools by presenting them in terms of the algorithm
specification. Second, we have made our SMT solver
proof-producing, and we would like to certify the proofs
using a trusted verifier such as the kernel of Isabelle.

REFERENCES

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, New York, NY, USA, 1996.

[2] R. Back and J. von Wright. Refinement calculus—A systematic
introduction. Springer Verlag, 1998.

[3] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Computer Aided Verification (CAV), volume 4590 of
Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, July 2007. Berlin, Germany.

[4] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and J. Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume
4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[5] D. Déharbe, P. Fontaine, S. Ranise, and C. Ringeissen. Decision
procedures for the formal analysis of software. In K. Barkaoui,
A. Cavalcanti, and A. Cerone, editors, Intl. Coll. Theor. Aspects
Comp. (ICTAC), volume 4281 of Lecture Notes in Computer
Science, pages 366–370, Tunis, Tunisia, 2007. Springer.

[6] C. Flanagan, S. N. Freund, and M. Lifshin. Type inference for
atomicity. In ACM SIGPLAN Intl. Ws. Types in language design
and implementation, pages 47–58, Long Beach, CA, 2005. ACM.

[7] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-
word compare-and-swap operation. In D. Malkhi, editor, Proc.
16th Intl. Symp. Dist. Comp., volume 2508 of Lecture Notes
in Computer Science, pages 265–279, Toulouse, France, 2002.
Springer.

[8] M. P. Herlihy. Wait-free synchronization. ACM Trans. Prog.
Lang. Syst., 13(1):124–149, 1991.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Prog. Lang. Syst.,
12(3):463–492, 1990.

[10] C. B. Jones. Tentative steps toward a development method for
interfering programs. ACM Trans. Prog. Lang. Syst., 5(4):596–
619, Oct. 1983.

[11] B. Jonsson. Simulations between specifications of distributed
systems. In J. C. M. Baeten and J. F. Groote, editors, CONCUR
’91, 2nd International Conference on Concurrency Theory, vol-
ume 527 of Lecture Notes in Computer Science, pages 346–360,
Amsterdam, The Netherlands, 1991. Springer.

[12] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans. Comp.,
28(9):690–691, 1979.

[13] L. Lamport. Specifying Systems. Addison-Wesley, Boston, Mass.,
2002.

[14] R. J. Lipton. Reduction: a new method of proving properties
of systems of processes. In 2nd ACM Symp. Princ. Prog. Lang.
(POPL), pages 78–86, Palo Alto, CA, 1975. ACM.

[15] N. Lynch and F. Vaandrager. Forward and backward simulations.
Part I: Untimed systems. Inf. Comput., 121(2):214–233, 1995.

[16] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared-memory
multiprocessors. J. Par. Dist. Comp., 51(1):1–26, 1998.

[17] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic. Number 2283 in Lecture Notes
in Computer Science. Springer Verlag, 2002.

[18] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification
of a non-blocking stack. SIGPLAN Not., 42(1):297–302, 2007.

[19] S. Schulz. System Description: E 0.81. In D. Basin and
M. Rusinowitch, editors, Proc. of the 2nd IJCAR, Cork, Ireland,
volume 3097 of LNAI, pages 223–228. Springer, 2004.

[20] N. Shavit and D. Touitou. Software transactional memory. In
Distributed Computing, pages 204–213, 1995.

[21] H. Sundell. Efficient and Practical Non-Blocking Data Structures.
PhD thesis, Gothenburg University, 2004.

[22] C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and
D. Topic. System description: Spass version 3.0. In F. Pfenning,
editor, 21st Intl. Conf. Automated Deduction (CADE 2007),
volume 4603 of Lecture Notes in Computer Science, pages 514–
520, Bremen, Germany, 2007. Springer.

