
An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

An efficient and simple class of functions to
model arrival curve of packetised flows

Marc Boyer, Jörn Migge, Nicolas Navet

RTSS/WCTT Workshop
Nov. 29th, 2011

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 1 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 2 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 3 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

What is Network Calculus ?

A theory designed to compute guaranteed bounds on
delays.

With a strong mathematical background: (min,+) algebra

Basic object: non-decreasing, non-negative functions

F = {f : R+ → R+ x < y =⇒ f (x) ≤ f (y)}

Three basic operations: the convolution ∗, deconvolution
�, the sub-additive closure f ∗.

(f ∗ g)(t) = inf
0≤u≤t

(f (t − u) + g(u)) (1)

(f � g)(t) = sup
0≤u

(f (t + u)− g(u)) (2)

f ∗ = δ0 ∧ f ∧ (f ∗ f ) ∧ (f ∗ f ∗ f ) ∧ · · · (3)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 4 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Network calculus overview

Two basic objects:

Flow:

modelling: R ∈ F = {R+ → R+, non-decreasing}
semantics: R(t), cumulative amount of data up to t

Server:

modelling: S ∈ F × F : R
S−→ R ′ =⇒ R ′ ≤ R

semantics: relation between some input and some output,
no loss, output comes after input (R ′(t) ≤ R(t))

delay:

d(R, S) ≤ max
R

S−→R′

h(R,R ′)

h(R,R ′) : horizontal deviation

R

R’

h(R,R’)

v(R,R’)

t

d(t)
b(t)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 5 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Contract modelling

Flow contract: arrival curve α

R ≺ α ⇐⇒ ∀t,∆ ∈ R+R(t + ∆)− R(t) ≤ α(∆)

⇐⇒ R ≤ R ∗ α

Server contract: service curve
simple service of curve β

R
S−→ R ′ ⇐⇒ R ′ ≥ R ∗ β

strict service of curve β
for all backlogged period [t, t + ∆[
(i.e.∀x ∈ [t, t + ∆[: R ′(x) < R(x)):
R ′(t + ∆)− R ′(t) ≥ β(∆)

Results: R
S−→ R ′, R ≺ α, S has service curve β:

R ′ ≺ α� β
d(R, S) ≤ h(α, β)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 6 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 7 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Shaping on links

A link is shared by a set of flows: what is the throughput of
this set ?

Principle: whatever the applicative throughput is, is it
limited by the links capacity
Also known has:

Serialisation: the frames of the different flows can not be
sent at the same time
Grouping: computes per-group throughput, not per-flow

Interest: considering long term rate ρ and instantaneous
burst b

applicative flows: small ρ, big b
link: big ρ, null b

Impact: up to 40% in industrial system

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 8 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Shaping and network calculus

Kb

ms

Shaping

Group sum

Let S be a server, with shaping curve σ, then, the output is
constrained by σ.
If the output is constrained by α′, it is by α′ ∧ σ.

R
S−→ R ′ =⇒ R ′ ≺ σ

R ≺ α,S D β =⇒ R ′ ≺ σ ∧ (α� β)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 9 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Modelling a packetized flow

Common example: sporadic flow

inter emission “period”: T

frame size (fixed or max): b

Two modelling:

fluid (“token bucket”): affine function, continuous

packetized: stair-case functions, discontinuous

Kb

ms

Packet

Fluid

Frame

Size

T

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 10 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Fluid modelling: the virtual burst problem

Jitter “shifts” the arrival curve:

if jitter < period: instantaneous burst unchanged

in fluid modelling: creation of virtual burst =⇒ increase
bounds

Packet

Fluid

Kb

Frame

Size

ms

Virtual

Burst

T − Jitter

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 11 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Putting all together

fluid + shaping: concave piecewise linear function (CPL)
Efficient min, max, sum
Implementation in floating points

stair-case modelling: general class (UPP)
Complex min, max, sum
Implementation in exact rationals (Q)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 12 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 13 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Getting the better of each class

Classes strengths/weaknesses:

jitter effect: stair-case class

summing (“grouping”): CPL class

shaping: CPL class

Idea:

keeping stair-case for individual flow constraint

converting into CPL when summing and shaping

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 14 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

From stair-case to CPL

t

b
T − τ

νT ,τ

γ b
T−τ

,b
γ b

T
,b(1+τ/T )

Figure: CPL overapproximation of a stair-case function

cpl(bνT ,τ ) = γ b
nT−τ

,nb ∧ γ b
T
,b(1+τ/T ) (4)

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 15 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Algorithm adaptation

Adaptation: replace
∑

F k
i ∈F

αk
i by

∑
F k
i ∈F

cpl(αk
i )

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 16 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 17 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Testbed configuration

industrial (Thales) configuration

104 nodes

8 switches

974 multicast flows

6501 end-to-end bounds

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 18 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Comparing methods

326 652 978 1304 1630 1956 2282 2608 2934 3260 3586 3912 4238 4564 4890 5216 5542 5868 6194
0

2000

4000

6000

8000

10000

12000

CPL
CPL/nu
UPP

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 19 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Zoom on worst delays

51 102 153 204 255 306 357 408 459 510 561 612 663 714 765 816 867 918 969
6000

7000

8000

9000

10000

11000

CPL
CPL/nu
UPP

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 20 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Pessimism evaluation

Method comparison: based on upper bound (UBm)

Best comparison: based on pessism

pessm = UBm −WCTT

Worst case unknown (WCTT )

Delay lower bound: trajectorial based approach (LB)

LB ≤WCTT ≤ UBm

pessm ≤ UBm − LB

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 21 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Uppers and lower bounds

3
2

6

6
5

2

9
7

8

1
3

0
4

1
6

3
0

1
9

5
6

2
2

8
2

2
6

0
8

2
9

3
4

3
2

6
0

3
5

8
6

3
9

1
2

4
2

3
8

4
5

6
4

4
8

9
0

5
2

1
6

5
5

4
2

5
8

6
8

6
1

9
4

0

2000

4000

6000

8000

10000

12000

Icc Bucket
Shaped stairs
Upp stairs
Unfavorable
Upp Stairs Pessimism Bound

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 22 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Pessimism bounding, per method

326 652 978 1304 1630 1956 2282 2608 2934 3260 3586 3912 4238 4564 4890 5216 5542 5868 6194
0

500

1000

1500

2000

2500

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 23 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Experiment values

Method CPL CPL/b.νT ,τ UPP
(float) (float) (rat)

Computation time 0.9 s 1.1 s 7.2 s

Min gain - 0% 0.15%
Max gain - 7.8% 15.2%
Av. gain - 2.49% 5.92%

Min gain on 1000 biggest - 0.8% 2.0%
Max gain on 1000 biggest - 4.4% 11.9%
Av. gain on 1000 biggest - 2.9% 8.3%

Gain correlation: 0.785

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 24 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Outline

1 Network calculus

2 Shaping, packetization and computation time

3 Swaping between function classes

4 Experiment

5 Conclusion

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 25 / 26



An efficient
and simple

class

M. Boyer

Network
calculus

Shaping,
packetization
and
computation
time

Swaping
between
function
classes

Experiment

Conclusion

Conclusion

Two critical aspects: shaping and packetization

Two existing methods:

fluid: bad packetization, quick computation
stair-case: good packetization, longer computation

Contribution: trade-off tightness/computation time

Don’t use CPL, use CPL/b.νT ,τ
simple to implement
low computation time over-head
significant bound improvement

Perspective: use in optimisation loop

quick computation in first iterations
longer computation to finalise

M. Boyer (ONERA,France) An efficient and simple class WCTT - Nov. 2011 26 / 26


	 
	Network calculus
	Shaping, packetization and computation time
	Swaping between function classes
	Experiment
	Conclusion

