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What is Network Calculus ?

A theory designed to compute guaranteed bounds on
delays.

With a strong mathematical background: (min,+) algebra

Basic object: non-decreasing, non-negative functions

F = {f : R+ → R+ x < y =⇒ f (x) ≤ f (y)}

Three basic operations: the convolution ∗, deconvolution
�, the sub-additive closure f ∗.

(f ∗ g)(t) = inf
0≤u≤t

(f (t − u) + g(u)) (1)

(f � g)(t) = sup
0≤u

(f (t + u)− g(u)) (2)

f ∗ = δ0 ∧ f ∧ (f ∗ f ) ∧ (f ∗ f ∗ f ) ∧ · · · (3)
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Network calculus overview

Two basic objects:

Flow:

modelling: R ∈ F = {R+ → R+, non-decreasing}
semantics: R(t), cumulative amount of data up to t

Server:

modelling: S ∈ F × F : R
S−→ R ′ =⇒ R ′ ≤ R

semantics: relation between some input and some output,
no loss, output comes after input (R ′(t) ≤ R(t))

delay:

d(R, S) ≤ max
R

S−→R′

h(R,R ′)

h(R,R ′) : horizontal deviation

R

R’

h(R,R’)

v(R,R’)

t

d(t)
b(t)
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Contract modelling

Flow contract: arrival curve α

R ≺ α ⇐⇒ ∀t,∆ ∈ R+R(t + ∆)− R(t) ≤ α(∆)

⇐⇒ R ≤ R ∗ α

Server contract: service curve
simple service of curve β

R
S−→ R ′ ⇐⇒ R ′ ≥ R ∗ β

strict service of curve β
for all backlogged period [t, t + ∆[
(i.e.∀x ∈ [t, t + ∆[: R ′(x) < R(x)):
R ′(t + ∆)− R ′(t) ≥ β(∆)

Results: R
S−→ R ′, R ≺ α, S has service curve β:

R ′ ≺ α� β
d(R, S) ≤ h(α, β)
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Shaping on links

A link is shared by a set of flows: what is the throughput of
this set ?

Principle: whatever the applicative throughput is, is it
limited by the links capacity
Also known has:

Serialisation: the frames of the different flows can not be
sent at the same time
Grouping: computes per-group throughput, not per-flow

Interest: considering long term rate ρ and instantaneous
burst b

applicative flows: small ρ, big b
link: big ρ, null b

Impact: up to 40% in industrial system
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Shaping and network calculus

Kb

ms

Shaping

Group sum

Let S be a server, with shaping curve σ, then, the output is
constrained by σ.
If the output is constrained by α′, it is by α′ ∧ σ.

R
S−→ R ′ =⇒ R ′ ≺ σ

R ≺ α,S D β =⇒ R ′ ≺ σ ∧ (α� β)
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Modelling a packetized flow

Common example: sporadic flow

inter emission “period”: T

frame size (fixed or max): b

Two modelling:

fluid (“token bucket”): affine function, continuous

packetized: stair-case functions, discontinuous

Kb

ms

Packet

Fluid

Frame

Size

T
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Fluid modelling: the virtual burst problem

Jitter “shifts” the arrival curve:

if jitter < period: instantaneous burst unchanged

in fluid modelling: creation of virtual burst =⇒ increase
bounds

Packet

Fluid

Kb

Frame

Size

ms

Virtual

Burst

T − Jitter
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Putting all together

fluid + shaping: concave piecewise linear function (CPL)
Efficient min, max, sum
Implementation in floating points

stair-case modelling: general class (UPP)
Complex min, max, sum
Implementation in exact rationals (Q)
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Getting the better of each class

Classes strengths/weaknesses:

jitter effect: stair-case class

summing (“grouping”): CPL class

shaping: CPL class

Idea:

keeping stair-case for individual flow constraint

converting into CPL when summing and shaping
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From stair-case to CPL

t

b
T − τ

νT ,τ

γ b
T−τ

,b
γ b

T
,b(1+τ/T )

Figure: CPL overapproximation of a stair-case function

cpl(bνT ,τ ) = γ b
nT−τ

,nb ∧ γ b
T
,b(1+τ/T ) (4)
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Algorithm adaptation

Adaptation: replace
∑

F k
i ∈F

αk
i by

∑
F k
i ∈F

cpl(αk
i )
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Testbed configuration

industrial (Thales) configuration

104 nodes

8 switches

974 multicast flows

6501 end-to-end bounds
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Comparing methods
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Zoom on worst delays
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Pessimism evaluation

Method comparison: based on upper bound (UBm)

Best comparison: based on pessism

pessm = UBm −WCTT

Worst case unknown (WCTT )

Delay lower bound: trajectorial based approach (LB)

LB ≤WCTT ≤ UBm

pessm ≤ UBm − LB
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Uppers and lower bounds
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Pessimism bounding, per method
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Experiment values

Method CPL CPL/b.νT ,τ UPP
(float) (float) (rat)

Computation time 0.9 s 1.1 s 7.2 s

Min gain - 0% 0.15%
Max gain - 7.8% 15.2%
Av. gain - 2.49% 5.92%

Min gain on 1000 biggest - 0.8% 2.0%
Max gain on 1000 biggest - 4.4% 11.9%
Av. gain on 1000 biggest - 2.9% 8.3%

Gain correlation: 0.785
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Conclusion

Two critical aspects: shaping and packetization

Two existing methods:

fluid: bad packetization, quick computation
stair-case: good packetization, longer computation

Contribution: trade-off tightness/computation time

Don’t use CPL, use CPL/b.νT ,τ
simple to implement
low computation time over-head
significant bound improvement

Perspective: use in optimisation loop

quick computation in first iterations
longer computation to finalise
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