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Abstract. In this study we show how one can use Fault-Tolerant Units (FTU) in an optimal way to make a TDMA
network robust to bursty random perturbations. We consider two possible objectives. If one wants to minimize the
probability of losing all replicas of a given message, then the optimal policy is to spread the replicas over time.
This is proved using convexity properties of the loss probability. On the contrary if one wants to minimize the
probability of losing at least one replica, then the optimal solution is to group all replicas together. This is proved
by using majorization techniques. Finally we show how these ideas can be adapted for the TTP/C protocol.
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1. Introduction

Context of the study. Multi-access protocols based on TDMA (Time Division Multiple
Access) are widely used in communications systems. TDMA based protocols are partic-
ularly well suited to real-time applications since they provide deterministic access to the
medium and thus bounded response times. Moreover, their regular message transmissions
can be used as “heartbeats” for detecting node failures. There exists several variants of the
TDMA scheme, in this paper we consider the synchronous TDMA scheme as adopted by
the TTP/C protocol (TTTech Computertechnik GmbH, 2003). The stations have access to
the bus in a strict deterministic sequential order, each station possesses the bus for a constant
period of time called a slot during which it has to transmit one frame. The sequence of slots
such that all stations have access once to the bus is called a round.

The use of TDMA based protocols is considered in high-dependability real-time appli-
cations where fault tolerance and guaranteed response times have to be provided. Exam-
ples of such applications are “brake-by-wire” and “steer-by-wire” in-vehicle applications
(see Dilger et al., 1998 or Wilwert et al., 2004) or avionic applications. In such so called
“X-by-wire” applications, mechanical and hydraulic components are replaced by computer
control which has to be fault-tolerant. A Fault-Tolerant Unit (FTU) is a set of two or more
nodes that performs the same function and thus may tolerate the failure of one or more of its
constituent stations. Actually, the role of FTUs is two-fold considering the type of failure
of the stations. They make the system resilient in the presence of transmission errors (some
frames may be still be correct while others are corrupted). They also provide a way to fight
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against measurement and computation errors occurring before the transmission (some node
may send the correct values while others may make errors). In the following we will see that
according to which role is the most important, the optimization will lead to very different
solutions.

Embedded systems may suffer from strong EMI (electro-magnetic interferences) which
may represent a serious threat to the correct behavior of the system. For instance, in automo-
tive applications, the EMI (Noble, 1992; Zanoni and Pavan, 1993) can either be radiated by
some in-vehicle electrical devices (e.g., switches or relays) or come from a source outside
the vehicle (radio, radars, flashes of lightning, . . . ). EMI could affect the correct func-
tioning of all the electronic devices but the transmission support is a particularly “weak
link” and the use of an all-optical network, which offers very high immunity to EMI, is
not generally feasible because of the low-cost requirement imposed by the industry (see
Barrenscheen and Otte (1997) for more details on the electro-magnetic sensitivity of dif-
ferent types of transmission support). Even with a redundant transmission support, such as
in TTP/C, the network is not immune to transmission errors since a perturbation is likely
to affect both channels in quite a similar manner since they are identical and very close
one to each other. Unlike CAN (Controller Area Network—(ISO, 1994)), TDMA do not
provide automatic retransmission for corrupted frames and their data is actually lost for the
application.

Goal of the paper. The problem we address in this study is to find the best allocation of
the slot of each station in the round in such as a way as to maximize the robustness of the
system against errors. The solution to this slot allocation problem has to take into account
the fact that a data will be sent by more than one node in the same round (by all nodes
of the FTU) and that it might be sent several times by a same node (in successive rounds)
when the production period of the data is greater than the length of a round. We consider
two distinct objectives:

Objective 1: Minimize, for each FTU, the probability that all frames of the FTU carrying
the same information will be corrupted. In the rest of the paper, this probability will be
termed the “loss probability” and denoted by Pall.

Objective 2: Maximize, for each FTU, the probability that at least one frame of each station
composing the FTU is successfully transmitted during the production period of a data.
For this objective, we will assume that the production period of the data is equal to the
length of a round (see Section 2.2 for a justification). Under this assumption, it comes to
minimizing, for each FTU, the probability that one (or more) frame of the FTU will be
lost during a round. The corresponding probability is denoted by Pone.

As it will be further discussed in Section 2.3, the two objectives correspond to well-defined
situations in the field of fault-tolerance that are distinguished with regard to the concept of
“fail-silence”. It will also be shown that the fulfillment of these two objectives at the same
time is incompatible.
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Assumptions on the error model. In this study, we will consider an error arrival process
where “bursts” of transmission errors may occur. This is very likely in the context of in-
vehicle multiplexing applications.

If successive transmission errors are not correlated (i.i.d.), it is clear that the location of
each individual slot of an FTU has no influence on the loss probability since each slot has the
same probability of being corrupted independently. However, in practice, transmission errors
are highly correlated and one observes bursts or errors leading to successive transmission
errors. The assumptions made for the error arrival process will thus influence the solution
to the problem of locating the FTU slots. We will consider an error model that can take
into account both error frequency and error gravity which generalizes a model proposed
in Navet et al. (2000). Here are the assumptions on the perturbation errors made in the rest
of the paper:

〈A1〉 Each time an EMI occurs, it will perturb the communications on the bus during
a certain duration and each bit transmitted during this perturbation is corrupted with
some probability π . If a perturbation overlaps a whole frame, then we assume that the
probability that the frames remains uncorrupted is negligible (with π = 0.5 and a 100
bits frame, this probability is about 10−30).

〈A2〉 The starting times of the EMI bursts are independent random variables, uniformly
distributed over time.

The results achieved for Objective 2 are valid for all possible distributions of the size of
the bursts (provided they remain independent of the starting point of the perturbation).
Objective 1, however, cannot be tackled without some hypotheses on the distribution of the
size of the bursts. In the following, we consider:

〈A3〉 The size of each EMI burst is exponentially distributed.

Without further knowledge on the considered application and its environment, assumptions
〈A1〉 and 〈A2〉 are rather reasonable. Assumption 〈A3〉 is more technical and will be used
in the proofs of Section 3.1 (Objective 1). We would like to point out that the guidelines
provided for Objective 1 should be valid for a large class of distributions, not only for the
exponential one and we will give the tools to the application designer for checking whether
the distribution of the bursts’ length, corresponding to its particular context, belongs to this
class or not.

Related work. The Time-Triggered Architecture (TTA—see Kopetz, 1997; Kopetz et al.,
2001) has been designed for high-dependability real-time systems such as automotive ap-
plications. The TTP/C protocol (TTTech Computertechnik GmbH, 2003), which is a central
part of the TTA, possesses numerous features and services related to dependability such
as the bus guardian (Temple, 1998), the group membership algorithm (Pfeifer, 2000) and
support for mode changes (Kopetz et al., 1998). The TTA and the TTP/C protocol have been
designed and extensively studied at the Vienna University of Technology. Closely related
to our proposal is the work described in Grünsteidl et al. (1991) where the reliability of the
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transmission on a TTP network is studied with the taking into account of transmission errors
on the bus as well as failures in the TTP nodes. Under the assumption that all failures and
transmission errors are statistically independent, a measure of the reliability of the trans-
mission is given in terms of Mean Time To Failure (MTTF) where a communication failure
for an FTU is defined as the loss of all messages of an FTU sent in the same round. From the
MTTF of each individual FTU, a global measure of the reliability of the system is derived.

There exist two main differences with our work. One concerns the assumptions made
on the perturbations and the second the data production. In Grünsteidl et al. (1991) the
errors are assumed to be independent, the location of the FTU slots has thus no influence
and is not considered. Here on the contrary, we take into account the burstiness of the
perturbation process. Hence the time allocations of the FTU replicas will have a big effect
on the transmission error probabilities.

As for the data production issue, in Grünsteidl et al. (1991) failure is decided on a per
round basis while in this paper this event will be assessed considering the frames sent in a
production cycle of a data. Indeed, the same data might be transmitted during successive
rounds and the fact that no frame of an FTU has been successfully transmitted in one round
does not necessarily imply a communication failure because the same data is also sent in
following rounds (see Section 2.2).

The second difference with Grünsteidl et al. (1991) is that we do not merely compute the
reliability of a given system but also provide a way to optimize it via time allocation of the
replicas. This does not require any modification of the protocol or of the parameters of the
system. Just playing with the temporal allocation of replicas provides a substantial gain in
resilience (around 80% in many cases) as seen in Section 3.

Finally another novelty with respect to previous work comes from the proof techniques.
They are based on multimodularity and bracket sequences for Section 3 and on majorization
and Schur convexity for Section 5. To the best of our knowledge, these notions have never
been applied in this framework and they may prove to be useful for several other related
problems.

2. Framework of the Study

In this section, we first describe the Medium Access Control (MAC) protocol, namely the
synchronous TDMA scheme, then the model of the application and the notations used.
Then, we justify the two distinct objectives that were identified with regard to the concept
of “fail-silence”.

2.1. MAC Protocol Description

Throughout this paper, we will consider the synchronous TDMA protocol. The number of
stations, S, is static and the stations have access to the bus in a strict deterministic sequential
order. Each station possesses the bus for a constant period of time called a slot during which
it has to transmit one frame. The size of the slots is not necessarily identical for all stations
but successive slots belonging to the same station are of the same size. The sequence of slots
such that all stations have access once to the bus is called a round, as shown in Figure 1.
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Figure 1. A round is made of S slots (here S = 6), one slot per station.

The time needed to transmit one bit over the bus is taken as the time unit. In the following
all time quantities are given using this time-bit as unit.

2.2. Application Model

2.2.1. Fault-Tolerant Units

To achieve fault-tolerance, that is the capacity of a system to deliver its service even in the
presence of faults, some nodes are replicated and are clustered into Fault-Tolerant Units
(FTUs). An FTU is a set of several stations that perform the same function and each node
of an FTU possesses its own slot in the round so that the failure of one or more stations in
the same FTU might be tolerated. The stations forming an FTU are called replicas in the
following. For the sake of simplicity, a non-replicated station will also be termed an FTU
(of cardinality one).

2.2.2. Construction of the Round

One denotes by F the set of FTUs : F = {A, B, C...} and CA is the cardinality of FTU A,
i.e. the number of stations forming FTU A. The size (in bits) of the slots of all the stations
in A is the same and is denoted by h A. By definition, the total number of bits in a round,
denoted R, is equal to:

R =
∑

A∈F
CAh A.

The whole problem consists in choosing the position of the slots of all stations forming
an FTU in a round. This is done under the form of a binary vector x A of size R (called an
allocation for A) defined by

∀1 ≤ i ≤ R, x A
i =

{
1 if some station in A transmits at time-bit i

0 otherwise.

Note that the construction of x A must respect several constraints. First the binary vector x A

must be made of CA “blocks” of ones, each of size h A to correspond to an allocation of all
the slots of A. Second, the allocations of all the FTUs must be compatible, meaning that
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the same bit cannot be allocated to two different FTUs. Finally all bits in a round must be
allocated to some FTU.

2.2.3. Data Production

Each frame contains some data whose value is periodically updated as it is generally the
case in control applications. For instance, in a typical in-vehicle application, a frame sent
by the engine controller may contain the number of revolutions per minute value plus the
engine temperature. Since they are replicas, all nodes of an FTU update their data with
the same period denoted by TA and called a production cycle. The data sent during one
production cycle is also called a message in the following. It is also assumed that all nodes
of a FTU are synchronized, using the global time service requested by the communication
protocol, so that at each point in time each node of an FTU sends the data corresponding to
the same production cycle.

The length of the TDMA round R is a function of the number of nodes, of the maximal
size of the message sent in each slot, and on some characteristics of the network and of
the communication controllers. Theoritically, the value of R is thus not correlated with the
production period of the data. If ∃A ∈ F s.t. TA < R then some data may not be transmitted
which is generally unacceptable. If ∀A ∈ F, TA > R then the same data is transmitted in
more than one round. Also, if the beginning of the production cycle does not correspond
to the beginning of a round, then data corresponding to different production cycles may be
transmitted in the same round as it is the case in the first and third round of the example
drawn on Figure 2.

In practice, it is very convenient for the application designer to set the production period
of an information equal to the length of a round or a multiple of the length of the round
(see, for instance, the steer-by-wire case study in Wilwert et al. (2004)). For instance, it
guarantees that all successive informations that are produced are transmitted in exactly the
same number of frames. For a single FTU, this is made possible by inserting idle time after
the transmission of a frame so that the duration of a slot or a round can take an application
related value.

2.3. Which Objective with Respect to Fail-Silence?

The number of replicas per FTU which is required to tolerate k faults heavily depends on
the behavior of the individual components (Dilger et al., 1998). For instance, if the failure

Figure 2. Three successive rounds. Only the slots allocated to the FTU A of cardinality 3 are shown.The message
corresponding to the (i + 1)th production cycle is sent over 3 rounds.
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of k nodes must be tolerated, the least necessary number of replicated nodes is k + 1 when
all nodes are fail-silent. A node is said fail silent if

1. (a) it sends frames at the correct point of time (correctness in the time domain) and (b)
the correct value is transmitted (correctness in the value domain),

2. or it sends detectably incorrect frames (e.g., wrong CRC) in its own slot or no frame at
all.

TTP/C provides very good support for the requirements 1(a) and 2 (whose fulfillment
provide the so-called “fail-silence in the temporal domain”) especially through the bus
guardian concept, while the value domain is mainly the responsibility of the application.
The reader is referred to Brasileiro et al. (1996), Dilger et al. (1998), Temple (1998), and
Poledna et al. (2000) for good starting points on the problem of ensuring fail-silence. For
FTUs composed of a set of fail-silent nodes, the successful transmission of one single frame
for the whole set of replicas is sufficient since the value carried by the frame is necessarily
correct (i.e., one can safely consume it). In this case, the objective to achieve with regard to
the robustness against transmission errors is the minimizing of Pall, that is the probability
that all frames of the FTU (carrying data corresponding to the same production cycle) will
be corrupted.

In practice, it is generally impossible to guarantee that nodes are fail-silent with proba-
bility one; this can be due to possible measurement errors, possible calibration problems
or simply sensors can disagree because they are physically distributed (see Poledna, 1996;
Brasileiro et al., 1996 for the problem of ensuring fail-silence). Two types of faults are
identified: faults in the value domain (e.g., measurement problems) and faults in the time
domain (e.g., transmission problem). A fault in the value domain corresponds to the case
where the value of an information received is wrong (the sender node is thus non fail-silent).
When an information is not received or not on time (e.g., a frame has been corrupted by an
EMI), one talks of a failure in the time domain.

When conceiving a system that has to be fault-tolerant, it is crucial to carefully define the
fault-hypothesis. Precisely, one has to state what has to be tolerated. For many industrial
systems, in particular in the context of automotive systems, due to the constraint of energy,
weight, size and cost, one can reasonably not expect a fault-hypothesis stating that more
than one failure (either a fault in the value domain or a fault the time domain) has to be
tolerated, even for X-by-Wire systems (see, for example, the case studies in Wilwert et al.
(2004) or X-by-Wire Consortium (1998) on page 12 and the fault-hypothesis of TTP/C in
TTTech Computertechnik GmbH (2003) on page 27). For instance, tolerating two faults in
the value domain would necessitate an FTU of cardinality 5 for performing a majority vote!

Faults that are not covered by the fault-hypothesis are generally treated with some pre-
defined procedure (default procedure or so called Never Give Up procedure, see Rushby,
2003) but the probability to be outside the fault hypothesis has to be minimized. To this
end, since there is no way to avoid faults in the value domain for most FTUs, one has to
minimize the probability that a fault in the temporal domain occurs for an FTU. This comes
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to maximize the probability that all replicas are received, namely Pone, which is the second
objective of our study.

3. Minimising the Loss Probability: The General TDMA Case

In this section, we investigate the problem of minimizing the loss probability Pall, the prob-
ability that all frames of a FTU carrying the same information is corrupted. In Section 3.1,
we focus on the optimal policy for one FTU. In Section 3.2, we consider all FTU com-
bined. Some cases can be treated analytically in an optimal way (see Section 3.2.1). For the
other cases, an heuristic is proposed in Section 3.2.2 and its performances are assessed by
simulation.

3.1. Optimal Allocation for a Single FTU

One focus here on a given FTU, say A, made of K := CA replicas per round, all of size
h := h A. The problem is to find an allocation x of the K replicas over one production
period that minimizes the probability Pall that all replicas carrying the same message are
lost, regardless of the other FTUs. The proof technique uses two notions: multimodularity
and “bracket” sequences.

3.1.1. Optimization using Multimodularity and Bracket Sequences

Let x be a binary vector of size R. Its density is (1/R)
∑R

i=1 xi . A binary vector is a block-
vector with blocks of size h if xi = 1 only in intervals of h consecutive values. A block shift
is a vector δi such that δi (n) = 0 for all n except δi (i) = +1 and δi (i + h) = −1. Basically
if x is a block-vector, then x + δi is also a block-vector similar to x with one of its blocks
shifted to the left by one unit as in the following example with blocks of size 3.

x = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0)

x + δ4 = (0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0).

A global shift of size j , s j is an operation on vectors that shifts all values to the left by j
(modulo the size of the vector) as in the following example:

x = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0)

s2(x) = (0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0).

A real function F(x) is block-multimodular with blocks of size h if the following inequality
holds for all block-vectors x .

∀i �= j F(x + δi ) + F(x + δ j ) ≥ F(x) + F(x + δi + δ j ) (1)

as soon as x + δi , x + δ j , x + δi + δ j are all block vectors.
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A bracket sequence v with density a/b is a binary vector of size b such that

vn = 	na/b
 − 	(n − 1)a/b
. (2)

For example, the bracket sequence with density 3/8 is

v3/8 = (0, 0, 1, 0, 0, 1, 0, 1).

A block bracket vector x with density ha/(b+ (h −1)a) with blocks of size h is constructed
from v in the following way.

– Start with x empty.

– If vi = 1, then x := x .1 · · · 1, (with h ones concatenated at the end of x).

– If vi = 0, then x := x .0.

Continuing the example, the block bracket vector with blocks of size 3 with density 9/14
is derived from v3/8 using the procedure above:

x = (0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1).

Note that x is not equal to v9/14, the bracket sequence with density 9/14, since v9/14 does
not contain blocks of size 3:

v9/14 = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1).

One can apply a general optimization theorem given in Altman et al. (2000b) to the block
case. This theorem relates the minimizing of multimodular functions with bracket vectors.

Theorem 1 (Altman et al., 2000b). Let F be a block-multimodular function, then consider
the average value over all possible shifts (also called the shift invariant version of F), namely
the function G(x) := 1/R

∑R−1
i=0 F(si (x)). Then G is minimized over all block vectors with

density d by the block bracket vector of density d.

Basically, multimodularity is the counterpart of convexity for discrete function ( f :
Z

m → R). For more details on multimodularity and bracket sequence, the reader might
refer to Hajek (1985) and Altman et al. (2000b). The next step is to prove that the loss
probability is a block multimodular function.
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3.1.2. Multimodularity of the loss probability

Here, we prove that the loss probability Pall is block-multimodular. In addition to assump-
tions 〈A1〉, 〈A2〉 and 〈A3〉 that concerns the error model, the following assumptions are
made on the production of data:

〈A4〉 The production period of an information is not necessarily equal to one round but is
assumed to be a multiple of the round length.

〈A5〉 Furthermore, it is assumed that there is no synchronisation between production and
transmission: in the initialization phase, the very first information is made available at a
random point in time in the first round.

In a first step, we consider a single error burst, then the result will be extended to the case
where several perturbations may occur.

Lemma 1. Under the foregoing assumptions, the probability Pall of losing all replicas of
FTU A with a single perturbation is block multimodular, with blocks of size h A.

The proof of Lemma 1 is given in Appendix A.
We believe that the multimodularity property holds for more general distributions of the

error size. By mimicking the proof of lemma 1, the application designer can check whether
the distribution of the bursts’ length, corresponding to its particular context, induces this
property. However, we checked that it does not hold for Pareto distributions (“heavy tailed”
distribution). The exponential distribution assumption is also crucial in the proof the next
theorem.

Theorem 2. Under the assumptions <A1>,<A2>,<A3>, <A4> and <A5>, the prob-
ability Pall of losing all replicas of FTU A forming the same message is minimized if the
replicas are allocated over each round according to a block bracket sequence.

Proof: By considering only bursts between time 0 and round C , we can assume using 〈A2〉
that all the bursts start at independent random times, uniformly distributed. The fact that
each individual burst is of exponential size (〈A3〉), makes is possible to discard overlaps.

The second step of the proof consists in noticing that Pall does not depend on shifts of the
allocation sequence x . This means it is equal to its shift invariant version. Finally, Theorem 1
together with Lemma 1, which is true for each burst independently, show that the function
Pall is block-multimodular and is minimized if the allocation of the replicas forms a block
bracket sequence.

The memoryless property of the exponential distribution allows to discard overlaps. This
will not be possible with other distributions. However, if perturbation overlaps are so unlikely
that they can be neglected, block bracket sequences still provide optimal allocations for all
distributions such that the loss probability is multimodular (see Lemma 1).
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3.2. Slot Allocation for Several FTUs

In this section, we consider several FTUs together and try to find an allocation for all of them
simultaneously. An optimal allocation for each FTU constructed using Theorem 2 is not
always feasible since the allocations may be conflicting with each other (if two allocations
have at least one bit in common). In the following, we distinguish the case where it is
possible to allocate all FTUs optimally and the case where this is not possible and where
compromises have to be found.

For example, consider three FTUs A, B, C of cardinalities 1, 2, 3 respectively over a
round of size 6. The optimal allocations of C are ·C · C · C or C · C · C · and the optimal
allocation of B are ·B · ·B· or B · ·B · · or · · B · ·B while any allocation of a single A over
a round is optimal. However note that B and C cannot be optimally scheduled together
since all six combinations between their individual optimal allocations have conflicts. Now
consider the case where the three FTUs A, BC, D have cardinalities 2, 2, 4, 3 respectively
over a round of size 11. The global allocation C B DC AC DBC AD is optimal for all FTUs.

In the following we give some conditions under which a global allocation is optimal and
how to construct it. When this is not possible, we give some heuristics that provide “good”
allocations.

3.2.1. Some optimal cases

Here, we give some conditions under which it is possible to allocate each FTU optimally
with no conflicts and provide an algorithm to construct such allocations.

Condition (C): the set of replicas can be split into two subsets such that each subset
induces a sub-sequence which is an exact covering sequence (i.e., a sequence in which each
replica of a FTU appears periodically—see Altman et al. (2003) for more details).

The algorithm to construct an optimal allocation is the following:

1. Find a partition of the replicas into two subsets such that (C) is verified.

2. Construct an exact covering sub-sequence for each sub-set independently.

3. Merge the two sequences using a bracket sequence with the appropriate rate (number
of slots in subset 1/overall number of slots).

For example, consider our second example above (A, B, C, D of cardinalities 2, 2, 4, 3
respectively over a round of size 11).

1. Split the set of replicas into {A, B, C} and {D}.

2. Build the exact covering sequence C AC BC AC B for the first set. The sub-sequence
corresponding to {D} is DDD which is also an exact covering sequence.
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3. Merge the two sequences according to the bracket word 00100010001 (‘0’ positions are
for FTUs of subset 1 while ‘1’ belongs to subset 2) which yields C B DC AC DBC AD.

In addition, there exist some cases where the cardinalities take more than two values and
a bracket allocation is still possible for all FTUs. If the cardinalities are of the form
1, 2, 4, 8, 16, . . . , 2k (all powers of 2) then, it is possible to find bracket allocations for
all FTUs. The Fraenkel conjecture (see Altman et al., 2000a) says that these are essentially
the only cases where the superposition of several bracket allocations is possible without
conflicts.

At this point, we should point out that the case with up to two different cardinalities, thus
verifying condition (C), should fulfill most of the needs. In a system where only a subset
of nodes are critical from a the point of view of the dependability, FTUs will generally
be of cardinality one (non-critical nodes) and two (critical nodes). In the context of X-by-
Wire applications where dependability constraints are stringent, two different cardinalities
should also generally be sufficient. For instance the prototype designed in the Brite Euram
III project “Safety related Fault Tolerant Systems In Vehicle” (see Dilger et al., 1998) is
composed of nodes of cardinalities two (the steering wheel actuator and the steering control
unit) and three (steering actuators).

3.2.2. General case

As mentioned before, the cases where condition (C) is verified are rather common in
practice. Nevertheless, it could happen that a more difficult configuration arises. In general,
it is not possible to allocate the slots of all FTUs according to bracket sequences without
getting conflicts. Two possible strategies can be considered:

1. One can deliberately favor a subset S of particularly critical FTUs having all the same
cardinality K and the same size h. In this case, the slots of those FTUs are allocated
optimally (regarding the loss probability) while the slots of the others FTUs are fit in
the remaining free places. The allocation is given by any block bracket sequence (see
Eq. 2) of density α = #(S)K h/R as done in the previous paragraphs.

2. No FTUs are of special importance and a solution minimizing the loss probability for
the set of all messages of the system has to be found.

In the rest of this section, we will consider the latter objective and provide a low-complexity
heuristic algorithm whose performance are evaluated against random allocation and optimal
allocations.

3.2.2.1. Description of the heuristic. As for a bracket sequence, the basic idea of this
heuristic is to spread the replicas of a same FTU as evenly as possible over time.

For each FTU A with cardinality CA and frames of size h A, we define the density of
frames per bit: u A := CAh A/R. Intuitively, u A is the number of frames belonging to FTU
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A that should be transmitted per bit. The sum of the densities up to bit k for FTU A is
U A

k := ku A. We denote by n A
i the number of bits FTU A has already been allocated up to

step i (including step i). At each step, an FTU will be allocated the number of bits necessary
to send its frame. In the following, s(i) indicates the FTU chosen at step i while b(i) is the
total number of bits already allocated at step i.

1. Initialization step: n A
0 := 0, b(0) := 0 and i := 1.

2. At step i the FTU for which the difference between the number of “due” bits and the
previous allocation is maximum is selected:

s(i) := argmaxA∈F

(
U A

b(i−1)+1 − n A
i−1

)
.

3. The next hs(i) bits are allocated for FTU s(i).

4. Perform the updates b(i) := b(i − 1) + hs(i), ns(i)
i := ns(i)

i−1 + hs(i) and n A
i := n A

i−1 if
A �= s(i).

5. if b(i) = R stop else i := i + 1, go to item 2.

The algorithmic complexity of the heuristic allocation is linear in the number of bits of
a round. Note that a similar construction based on density has been successfully used for
defining a policy that shapes real-time traffic in Gaujal and Navet (1999).

3.2.2.2. Performance evaluation. To assess the robustness of the allocations given by the
heuristic, simulations were performed against random allocations and optimal allocations
with Pall being the performance metric.

A configuration is defined by a number of FTU and the cardinality of each FTU. We
distinguish two classes of problem according to the number of FTUs on the network:
for a “medium size problem” there are at least 3 FTUs and at most 6 FTUs while in a
“large size problem” there are up to 12 FTUs. Two hundreds configurations were ran-
domly generated with FTUs having a cardinality between 2 and 4. For each configura-
tion, we randomly pick up 100 slots (in the 1000 first rounds) where a data is trans-
mitted for the first time. The duration of the production cycle of the data is equal to 3
rounds and is denoted by T . Then for each selected start of transmission, 500 bursts of
errors are generated with π = 1 and a size exponentially distributed of mean c · T with
c ∈ {0.5, 1, 1.5, 2}. If the burst of errors starts before the end of transmission of the first
replica and finishes after the start of transmission of the last replica, the data is lost. The
results of the experiments with random allocations and the proposed heuristics are shown on
Figure 3.

The use of the proposed heuristics greatly diminishes the total number of lost data (up to
79%) knowing that there are cases where the size of the burst is such that the data cannot be
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Figure 3. Reduction of the number of lost data when the heuristic is used instead of a random allocation. The
mean burst size ranges from 0.5 to 2 times the length of a production cycle which is chosen equal to 3 TDMA
rounds.

transmitted whatever the allocation. This fact explains why the efficiency of the heuristic
tends to be lower when the size of the burst is becoming larger.

We now evaluate the behavior of the heuristic with regard to the optimal bracket allocation.
We consider a case with only two replica cardinalities. Using the previous section, we know
that we can construct on optimal allocation. The heuristic allocation will not necessarily
find this optimal allocation and we want to measure how well it performs compared to the
optimal.

One considers 200 random configurations of the medium size problem for which the
optimal allocation is known (i.e., number of FTUs cardinalities is less than 3). The conditions
of the experiment are the same as in Section 5.3 except that the number of first transmission
slots that are selected is equal to 1000 (in the first 2000 rounds) and that 5000 bursts of errors
are randomly generated. The loss of performance against the optimal solution is shown on
Figure 4.

The average loss of performances with regard to the optimal solutions is small (less
than 11% on this set of experiments) and it logically decreases when the size of the bursts
becomes larger. That good behavior of the heuristic on configurations with less than 3
different cardinalities is a positive element with regard to its performance on arbitrary
configurations.

4. Minimising the Loss Probability: The TTP/C Case

In this section, we investigate the problem of minimizing the loss probability Pall on TTP/C.
The problem has been studied the previous section for the general synchronous TDMA case
but, as it will be discussed below, some features of TTP/C changes the solution with respect
to the general TDMA case. In fact, it makes it easier to reach optimal allocation for all FTUs
together compared to the pure synchronous TDMA network.
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Figure 4. Increase of the lost data when the heuristic is used instead of the optimal allocation.

4.1. TTP/C Error Handling Mechanisms

The TTP/C protocol includes powerful but complex algorithms such as the clique avoidance
and membership algorithms. In this paragraph, we give a simplified description of the
functioning schemes of TTP/C version 1.0 that are related with transmission error handling
and that might a priori interfere with our analysis. For instance, TTP/C defines the concept
of “shadow” node. A shadow node replaces a defective node but does not possesses its own
slot in the round. This redundancy scheme does not protect against transmission errors and
we won’t consider them in the rest of the paragraph.

A TTP/C controller is always in one of the nine states defined by the protocol
(see TTTech Computertechnik GmbH, 2003). Three are of particular importance in our
context:

1. the “active” state which is the normal functioning state,

2. the “passive” state: the controller is synchronized and can receive frames but no trans-
mission is allowed,

3. the “freeze” state: the execution of the protocol is halted and the reintegration
process will not be started before the controller is turned on by the application
software.

The protocol distinguishes frames with and without “C-State”. The C-State is a collection
of control data that describes the state of the network as seen by the sending node: current
time, current operating mode, membership of the stations (i.e., their operational state) ...
The most important TTP/C functioning schemes related to transmission error handling are
listed below:
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1. Lost of membership due to a incorrect transmission: if a frame is corrupted during its
transmission the sender loses its membership and enters the passive state. It waits in the
passive state until it can re-acquire its slot. To re-acquire a slot the controller must have
received the “minimum integration count” (MIC) correct frames (the first correct frame
must contain an explicit C-state). The value of the MIC should be set at least to two.

2. Maximum Membership Failure Count (MMFC) check: if a node do not possess its
membership in MMFC successive sending slots, then the controller terminates its op-
eration by entering the “freeze state”. It is an optional feature since MMFC can be set
to zero which means no verification.

3. Re-integration of a node (transit from freeze state to passive state): a “frozen” node
must wait until the application sets the Controller On (CO) field to the value “on”. Then
it must listen to a valid frame containing explicit C-state before entering the passive
state. Then the node has to re-acquire its slot as described in point 1.

4. Clique avoidance algorithm: before starting to send a frame, a node must verify whether
the number of frames that have been successfully sent in the last S slots (where S is
the number of slots in the round so that it includes its own last transmission) is greater
than the number of incorrect frames. In the latter case, the node enters the “freeze
state” otherwise it transmits its frame and reset its counters. This rule will be termed
the “majority rule”.

4.2. Minimizing Pall on TTP/C

The TTP/C rules 1, 2 and 3 actually affect the value of Pall but not which allocation scheme
is optimal. However, the majority rule of TTP/C (item 4 above) simplifies the solution with
respect to the general TDMA case.

Let us consider the following algorithm: one constructs two stacks S1 and S2 of slots.
For each FTU i with Ci replicas, push 	Ci/2
 slots in the largest stack and �Ci/2
 slots
in the smallest stack. The allocation xstack is constructed by concatenating S1 and S2. The
construction is illustrated by Figure 5.

Theorem 3. On TTP/C, under assumptions 〈A1〉 and 〈A2〉, the xstack allocation minimizes
Pall.

Proof: The replicas of an FTU can be corrupted by several perturbations each touching
exactly one frame. Since starting points of EMI bursts are uniformly distributed over time
(assumption 〈A2〉), this probability is equal under all allocations. Several replicas can also be
corrupted by a same perturbation with a probability decreasing when the distance between
the replicas inside the round becomes larger. The allocation xstack has the following property:
each FTU with more than two replicas has two replicas separated by at least 	S/2
 slots.
Now, as soon as two replicas of the same message are allocated more that 	S/2
 slots
apart, no single perturbation can destroy both of them without freezing all the nodes of the
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Figure 5. Construction of the optimal allocation xstack.

network. It is thus useless to consider a distance between replicas larger than 	S/2
. This
implies that xstack is optimal.

The following Corollary of practical interest can be deduced from Theorem 3.

Corollary 1. If the probability to have more than one perturbation in the same round is
sufficiently low, and because of the TTP/C majority rule, it is useless to have more than
two replicas per FTU if the objective is to minimize the corruption of all the replicas.

5. Minimizing the Probability that at Least One Replica is Corrupted

The objective here is to minimize the probability that one or more replicas of a FTU become
corrupted. The results of this section hold for general error model since only assumption
〈A1〉 are 〈A2〉 are needed. In the following, the technique used to find the optimal allocation
is based on majorization and Schur convexity.

5.1. Schur convexity and majorization

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two real vectors of size n. We denote by
(u[1], . . . , u[n]) and (v[1], . . . , v[n]) the permutations of u and v such that u[1] ≤ · · · ≤ u[n]

and v[1] ≤ · · · ≤ v[n]. The vector u majorizes v (u � v) if the following conditions hold:

n∑

i=1

ui =
n∑

i=1

vi , (3)

k∑

i=1

u[i] ≤
k∑

i=1

v[i] k ≤ n. (4)
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For example, one has (1, 3, 5, 10) � (2, 4, 4, 9).
A function f from R

n to R is Schur convex (resp. Schur concave) if u � v implies
f (u) ≥ f (v) (resp. f (u) ≤ f (v)). For more details on these notions, the reader can refer
to Marshall and Olkin (1979).

5.2. Schur Concavity of Pone

In this section, we will show that the probability that an error burst corrupts at least one
replica within a production cycle (Pone) is a Schur concave function with respect to the allo-
cation of the replicas. Using the definition of Schur concavity, this will provide directly the
best allocation minimizing Pone. Note that the result will be proven for arbitrary production
cycles although, in our context, Pone is only meaningful for a production cycle equal to one
TTP/C round.

Let x be an allocation of the K replicas forming FTU A. We denote by t = N K the
number of frames (of size h) composing a message for FTU A.

The quantity Ii (x) denotes the interval between the end of replica ri−1 and the beginning
of replica ri . We denote by I (x) the sequence of intervals (I1, . . . , It ) and by |I (x)| the vector
of the length of the intervals, |I (x)| = (|I1|, . . . , |It |). Note that |I1(x)| + · · · + |It (x)| =
N (R − K h) does not depend on the allocation x .

Lemma 2. Let us consider a single error burst starting at a random time uniformly
distributed over one round. Let x and x ′ be two allocations of A. If |I (x)| ≺ |I (x ′)| then
the probabilities of losing at least one frame satisfy Pone(x) ≥ Pone(x ′).

Proof: A replica can either be corrupted by a perturbation that starts between two replicas
of the FTU or by a perturbation that starts during the transmission of a replica of the FTU.
Both cases are independent and can be studied separately.

Let us first consider the first case. Note that if t = 1 then |I (x)| = |I1(x)| = N (R −
K h) = |I1(x ′)| = |I (x ′)| and all allocations are equivalent since the error model is time
homogeneous.

If t ≥ 2, we renumber the intervals of x and x ′ such that|I[1]| ≤ · · · ≤ |I[t]| and |I ′
[1]| ≤

· · · ≤ |I ′
[t]| . Using the majorization condition, one gets for all j ,

∑ j
i=1 |I[i]| ≥ ∑ j

i=1 |I ′
[i]|.

We now prove by induction that for all 1 ≤ j ≤ t one can construct a coupling be-
tween I[1], . . . , I[ j] and I ′

[1], . . . , I ′
[ j] such that the probability P

′
j that an error starting in

I ′
[1], . . . , I ′

[ j] and corrupting at least one replica is smaller than the corresponding probability
P j in I[1], . . . , I[ j] . For j = 1, the coupling is done according to Figure 6.

After the coupling, the intervalI[1] is split into two intervals,Z1 and J1 such that I[1] =
Z1 ∪ J1 and |I ′

[1]| = |J1|. A burst starting in J1 has the same probability of corruption that
a burst starting in I ′

[1] because

– both intervals are of the same size and both are contiguous to replicas having the same
length,
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Figure 6. Coupling for the smallest interval.

– if a perturbation overlaps the whole replica then the corruption occurs with probability
1 (assumption 〈A1〉) under x and x ′ otherwise the corruption probability is also identical
under x and x ′.

The remaining zone (Z1) is such that an error starting in Z1 corrupts one replica with a
non-negative probability. Therefore, P1 ≥ P

′
1.

The proof continues by induction on j . The induction property is that for a given j one
can construct a splitting of I[1], . . . , I[ j] into (J1, Z1), . . . , (Jj , Z j ) such that the probability
that a burst starting in J1 ∪ · · · ∪ Jj is larger or equal than in I ′

[1] ∪ · · · ∪ I ′
[ j] and the zone

Z1 ∪ · · · ∪ Z j , has a non-negative total probability of corrupting a replica.
We now add I[ j+1] and I ′

[ j+1]. Two cases can occur.

1. If I[ j+1] ≥ I ′
[ j+1] then one splits I[ j+1] as it has been done for I[1] and I ′

[1] in Figure 6. We
get new intervals Z j+1 and Jj+1 and the induction remains true by using the argument
given for j = 1.

2. IfI[ j+1] ≤ I ′
[ j+1], we couple according to the following procedure. The interval I ′

[ j+1]
is split into two intervals U and V such that |V | = |I[ j+1]|, which are coupled together.

Note that by the majorization property, |U | = |I ′
[ j+1]| − |I[ j+1]| ≤ |Z1| + · · · + |Z j |. Let

k := min{k : |Z1| + · · · + |Zk | ≥ |U |}. We split the interval Zk into two intervals Rk, Wk

such that |Wk | = |U | − (|Z1| + · · · + |Zk−1|). The coupling is illustrated in Figure 7.

– An error starting in V has the same probability to corrupt a frame than an error starting
in I[ j+1].

– An error starting in U has a smaller probability of corruption than an error starting in
Z1 ∪ . . . Zk−1 ∪ Wk because |V | > |Ji | for all i ≤ k.

– An error starting in I ′
[1] ∪ · · · ∪ I ′

[ j] has a probability of corruption smaller or equal than
an error starting inJ1 ∪ · · · ∪ Jj by the induction hypothesis.

– An error starting in Rk ∪ Zk+1 ∪ · · · ∪ Z j has a non-negative probability of corruption.

In total, P j+1 ≥ P
′
j+1.
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Figure 7. Coupling when I[ j+1] ≤ I ′
[ j+1].

Finally, the induction assumption is carried one more step by using the new splitting of
I[1], . . . , I[ j+1] into

((J1, ∅), . . . (Jk−1, ∅), (Jk, Rk), (Jk+1, Zk+1), . . . ,

(Jj , Z j ), (I[ j+1] ∪ Z1 . . . ∪ Zk−1 ∪ Wk, ∅)).

We will now consider the case where a replica is corrupted by a perturbation starting during
the transmission of a replica. The perturbation might corrupt either the replica during which
it occurred, with probability Pa under allocation x and P

′
a under x ′, or the next replica

(using assumption 〈A1〉) respectively with probability Pb or P
′
b. Since perturbation starting

points are uniformly distributed over time and slots have the same size under all allocations,
Pa = P

′
a . The same proof based on the length of the intervals between replicas used for Pt

shows that Pb ≥ P
′
b since |I (x)| ≺ |I (x ′)|.

The proof is concluded by noticing that Pone(x) = Pt +Pa+Pb ≥ Pone(x ′) = P
′
t +P

′
a+P

′
b.

Theorem 4. Under assumptions 〈A1〉 and 〈A2〉, for each FTU A, the optimal allocation
xone minimizing Pone is to group together all replicas of A.

Proof: Under (A1) and (A2), each burst may corrupt a same replica independently. There-
fore, Pone is a function of the probability that one burst corrupts one replica (denoted by q).
By conditioning on the number of bursts, say K , one gets

Pone =
K−1∑

i=0

q(1 − q)i = 1 − (1 − q)K .

This is an increasing function of q for all K . Therefore, minimizing q (i.e., minimizing
the impact of one burst) also minimizes the combined effect of all bursts.
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Figure 8. Reduction of the number of lost data when the optimal allocation is used instead of a random allocation.
The data being lost when at least one replica of a same FTU is corrupted. The mean burst size ranges from 0.5 to
3 times the length of a round.

Finally, let x be an arbitrary allocation. The restrictions over one round R of x and xone

are denoted x |R and xone|R respectively. They obviously satisfy I (x |R) ≺ I (xone|R). By
periodicity, one has I (x) = (I (x |R), I (x |R), . . . , I (x |R)) (repeated N times). This implies
I (x) ≺ I (xone). Finally, applying Lemma 2 concludes the proof.

5.3. Performance Evaluation

To assess the robustness improvement brought by the optimal allocation for Pone, simulations
were performed against random allocations. A configuration is defined by a number of FTU
and the cardinality of each FTU. In these experiments, the number of FTUs ranges from 3 to
12. Two hundreds configurations were randomly generated with FTUs having a cardinality
between 2 and 4. For each configuration, we randomly pick up 500 hundred slots (in the 2000
first rounds) where a data is transmitted for the first time. The duration of the production
cycle of the data is chosen equal to one round which length is R. Then for each selected start
of transmission, 10000 bursts of errors are generated with a size exponentially distributed
of mean c · R with c ∈ {0.5, 1, 1.5, 2, 2.5, 3}. The starting point of each burst is randomly
chosen in the first 2000 rounds. The event that has to be avoided is the corruption of one or
more frames of the FTU by a perturbation. The results of these experiments are shown on
Figure 8.

One observes that the clustering of the replica significantly diminishes the total number
of lost data (around 18.5% for c ∈ {2, 2.5, 3}) knowing that there are cases where the
start of the burst and its size are such that at least one replica will be corrupted whatever
the allocation. The loss of robustness with a random allocation tends to be more important
when the size of the burst is becoming bigger.
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6. Concluding Remarks

This study shows that for TDMA-based systems with bursty perturbations choosing the
position of the replicas inside the round has a very important impact on the efficiency of
the replication.

The first result of this study is to give an optimal way to spread the replicas in order to
minimize the probability to lose all replicas. This result is valid for most of the needs (see
Section 3.2.1). For the other cases, we provide a low-complexity heuristic which proves to
be very efficient on the simulations that were performed.

In a second part, it was shown that clustering together all replicas minimizes the prob-
ability to lose one or more replicas under a more general bursty perturbation model (the
length of the bursts are not necessarily exponentially distributed). This result holds when
the production cycle of a data is equal to the length of a TTP/C round. A first extension of
this study is to consider arbitrary data production cycles but, then, the objective would be to
receive at least one frame per station that belongs to the FTU during one production cycle.

As suggested by a reviewer, another interesting objective would be to maximize the ex-
pected number of replicas that are successfully received in order to maximize the confidence
in the information. In a future work, one may also consider the case where a subset of FTUs
requires the minimization of the loss probability while the rest of the FTUs need to minimize
the probability that at least one replica is lost. This may be a situation arising on systems
made of fail-silent and non fail-silent nodes. Another future work is to consider the use
of Forward Error Correction techniques (such as Reed-Salomon codes) instead of replicas
in order to make the system even more robust to transmission errors. Finally, we intend to
study the robustness against transmission errors of an hybrid event-triggered/time-triggered
network such as FlexRay which is also considered for use in X-by-Wire automotive appli-
cations.

Appendix A: Proof of Lemma 1

Let us consider an arbitrary allocation x for A. We look at the probability that an error
corrupts all replicas carrying a given message m for allocation x . The same message (m)
is emitted by a number of replicas which can be written as N K where N is an integer, and
K := CA is the number of replicas per round. For notation simplicity, we also set h := h A.

In the following, one denotes by C the round where message m begins. One also denotes
by Pk the position of the last bit of the k-th replica for the FTU A in x and by di

k the
“distance” between replica k and replica k + i : di

k = Pk+i − Pk .
One denotes by Pall(x) the loss probability of m under allocation x ; by P0(x) the loss

probability under allocation x given that the perturbation starts in a round preceding round
C and by P1(x) the loss probability under allocation x given that the perturbation starts in
the same round (C) . When the EMI burst covers the whole message, there is a relation
between the random variables corresponding to the beginning of the message m (called
B) and the beginning of the error burst (called S) respectively. Basically, the error must
start before the end of the first replica carrying message m. See Figures 9 and 10 for an
illustration of cases P0 and P1 respectively.
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Figure 9. A perturbation burst which begins in a round preceding the start of a message covers the whole message
(case P0).

By conditioning over the values of B and L (which are independent variables), we obtain:

P1(x) =
C K+K∑

k=C K+1

[
(1 − (1 − π )h)NK Pr(Pk−1 − h < B < Pk − h)Pr(C R ≤ S ≤ Pk)

× Pr
(
L + S ≥ RN − d1

k−1 − h + Pk
)]

= (1 − (1 − π )h)NK

R2

CK+K∑

k=CK+1

d1
k−1

∫ Pk

C R
exp

(
λ
( − RN + d1

k−1 + h − Pk + S
))

d S

= (1 − (1 − π )h)NK

λR2

K∑

k=1

d1
k−1 exp

(
λ
( − RN + d1

k−1 + h
))

(1 − exp(−λPk)),

Figure 10. A perturbation burst, beginning in the same round as the message, covers the whole message (case
P1).
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and

P0(x)=
C K+K∑

k=C K+1

(1 − (1 − π )h)NK Pr(Pk−1 − h < B < Pk − h)Pr
(
L + S

≥RN + Pk − d1
k−1 − h

)

= (1 − (1 − π )h)N K

R

C K+K∑

k=C K+1

d1
k−1Pr(L + S ≥ RN + Pk − d1

k−1)

= (1 − (1 − π )h)N K

R

C K+K∑

k=C K+1

d1
k−1

∫ CR

0
exp

(
λ
( − RN − Pk + S + d1

k−1

))
d S/C R

=π N K (1 − (1 − π )h)N K

λC R2

K∑

k=1

d1
k−1 exp

(− λRN − λPk + λd1
k−1

)
(1 − exp(−λC R)).

Finally,

Pall(x) = 1/(C + 1)P1(x) + C/(C + 1)P0(x)

= M
K∑

k=1

d1
k−1((1 − exp(−λPk)) + exp(−λPk)(1 − exp(−λC R))) exp

(
λd1

k−1

)

= M
K∑

k=1

d1
k−1(1 − exp(−λPk − λC R)) exp

(
λd1

k−1

)
,

where

M = exp(−λRN + λh)(1 − (1 − π )h)N K

(C + 1)λR2
.

We consider shifts to the left of the normalization P(x) := Pall(x)/M .

P(x + δi ) =
K∑

k=1,k �∈{a,a+1}
d1

k−1(1 − exp(−λPk − λC R)) exp
(
λd1

k−1

)

+ (
d1

a−1 − 1
)
(1 − exp(−λPa + λ − λC R)) exp

(
λd1

a−1 − λ
)

+ (
d1

a + 1
)
(1 − exp(−λPa+1 − λC R)) exp

(
λd1

a + λ
)
.

We need to distinguish the cases where |b − a| = 1. We focus on the case where b = a + 1
(the case a = b + 1 is symmetrical by exchanging the roles of a and b). If b > a + 1,

P(x + δi + δ j ) =
K∑

k=1,k �∈{a,a+1,b,b+1}
d1

k−1(1 − exp(−λPk − λC R)) exp
(
λd1

k−1

)

+ (
d1

a−1 − 1
)
(1 − exp(−λPa + λ − λC R)) exp

(
λd1

a−1 − λ
)



MAXIMIZING THE ROBUSTNESS OF TDMA NETWORKS WITH APPLICATIONS TO TTP/C

+ (
d1

a + 1
)
(1 − exp(−λPa+1 − λC R)) exp

(
λd1

a + λ
)

+ (
d1

b−1 − 1
)
(1 − exp(−λPb + λ − λC R)) exp

(
λd1

b−1 − λ
)

+ (
d1

b + 1
)
(1 − exp(−λPb+1 − λC R)) exp

(
λd1

b + λ
)
.

If b = a + 1, on the other hand, we get

P(x + δi + δ j ) =
K∑

k=1,k �∈{a,a+1,a+2}
d1

k−1(1 − exp(−λPk − λC R))) exp
(
λd1

k−1

)

+ (
d1

a−1 − 1
)
(1 − exp(−λPa + λ − λC R)) exp

(
λd1

a−1 − λ
)

+ (
d1

a

)
(1 − exp(−λPa+1 + λ − λC R)) exp

(
λd1

a

)

+ (
d1

a+1 + 1
)
(1 − exp(−λPa+2 − λC R)) exp

(
λd1

a−1 + λ
)
.

If we compute Q := P(x + δi ) + P(x + δ j ) − P(x + δi + δ j ) − P(x), we get 0 when
b > a + 1 and when b = a + 1, we get

Q = (
d1

a + 1
)
(1 − exp(−λPa+1 − λC R)) exp

(
λd1

a + λ
)

− (
d1

a

)
(1 − exp(−λPa+1 + λ − λC R)) exp

(
λd1

a

)

+ (
d1

a − 1
)
(1 − exp(−λPa+1 + λ − λC R)) exp

(
λd1

a − λ
)

− d1
a (1 − exp(−λPa+1 − λC R)) exp

(
λd1

a

)
.

After some simplifications, we obtain

Q = exp
(
λ
(
d1

a + 1
))

d1
a + d1

a exp
(
λ
(
d1

a − 1
)) − 2d1

a exp
(
λd1

a

)

+ exp
(
λ
(
d1

a + 1
)) − exp

(
λ(d1

a − 1
))

+ exp
(
λ
(
d1

a − Pa+1 − RC
)) − exp

(
λ
(
d1

a − Pa+1 − RC + 1
))

≥ 0.

The first line is non-negative by convexity of the function z �→ exp(λz). The sum of the
second and third lines is also non-negative by convexity of the function z �→ exp(λz).
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